
Query Propagation in a P2P Data Integration
System in the Presence of Schema Constraints

Tadeusz Pankowski1,2

1 Institute of Control and Information Engineering,
Poznań University of Technology, Poland

2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland

tadeusz.pankowski@put.poznan.pl

Abstract. This paper addresses the problem of data integration in a
P2P environment, where each peer stores schema of its local data, map-
pings between the schemas, and some schema constraints. The goal of
the integration is to answer queries formulated against a chosen peer.
The answer consists of data stored in the queried peer as well as data
of its direct and indirect partners. We focus on defining and using map-
pings, schema constraints, query propagation across the P2P system, and
query reformulation in such scenario. The main focus is the exploitation
of constraints for merging results from different peers to derive more
complex information, and utilizing constraint knowledge to query prop-
agation and the merging strategy. We show how the discussed method
has been implemented in SixP2P system.

1 Introduction

In a peer-to-peer (P2P) data integration scenario, the user issues queries against
an arbitrarily chosen peer and expects that the answer will include relevant data
stored in all P2P connected data sources. The data sources are related by means
of schema mappings. A query must be propagated to all peers in the system
along semantic paths of mappings and reformulated accordingly. The partial
answers must be merged and sent back to the user peer [9,14,16].

Much work has been done on data integration systems both with a mediated
(global) schema and in P2P architecture, where the schema of any peer can play
the role of the mediated schema [4,9,10,19]. There is also a number of systems
built in P2P data integration paradigm [8], notably Piazza [17], PeerDB [12]). In
these research the focus was on overcoming syntactic heterogeneity and schema
mappings were used to specify how data structured under one schema (the source
schema) can be transformed into data structured under another schema (the
target schema) [6,7]. A little work has been paid on how schema constraints
influence the query propagation.

In this paper we discuss the problem of query propagation where schemas
are defined by means of tree-pattern formulas and there are constraints (XML

A. Hameurlain (Ed.): Globe 2008, LNCS 5187, pp. 46–57, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Query Propagation in a P2P Data Integration System 47

functional dependencies) defined over the schemas. We show how mutual rela-
tionships between schema constraints and queries can influence both propagation
of queries and merging of answers. Taking into account such interrelationships
may improve both efficiency of the system and information content included in
answers. We shortly show how the issues under consideration have been imple-
mented SixP2P (Semantic Integration of XML in P2P environment) system.

In Section 1, formal concepts underlying XML data integration are discussed.
The main theoretical result concerning query propagation and merging of an-
swers is included in Section 3. In Sections 4 we show some details about query
propagation in SixP2P implementation. Section 5 concludes the paper.

2 Pattern-Based Schemas, Mappings and Queries

2.1 Schemas

In this paper an XML schema (a schema for short) will be understood as a tree-
pattern formula [4,14]. Schemas will be used to specify structures of XML trees.
Other properties of XML trees are defined as schema constraints.

Definition 1. A schema over a set L of labels and a set x of variables is an
expression conforming to the syntax:

S ::= /l[E]
E ::= l = x | l[E] | E ∧ ... ∧ E,

(1)

where l ∈ L, and x is a variable in x. If variable names are significant, we will
write S(x).

Example 1. The schema S1 in Figure 1 can be specified as follows:

S1(x1, x2, x3, x4) := /pubs[pub[title = x1 ∧ year = x2∧
author[name = x3 ∧ university = x4]]]

����

���

����	
�����

����

�
�	
���	
�

����	����
����

���

����

�
�	
�

�

����	����
���

����

����

����	 �	
�
�����

�
�	 ����	�����

�����

����

����

����	
�����

�
�	 ����	�����

�����

�����

�����

�
�	 �
�	�

����	 �	
�

�����

�������
�����

����

�
�	
�

�

�
�	

����	
�����

�	

������

���

Fig. 1. XML schema trees S1, S2, S3, and their instances I1, I2 and I3, located in peers
P1, P2, and P3, respectively

48 T. Pankowski

Definition 2. Let S be a schema over x and let an atom l = x occur in S. Then
the path P starting in the root and ending in l is called the type of the variable
x, denoted typeS(x) = P .

Example 2. The type of x1 in schema S1 is
typeS1(x1) = /pubs/pub/title.

An XML database consists of a set of XML data trees. It will be useful to
represent an XML tree I with schema S(x) as a pair (S(x), Ω), where Ω is a set
of valuations of variables in x.

Definition 3. Let Str ∪ {⊥} be a set of strings used as values of text nodes,
where ⊥ is the distinguished null value. Let x be a set of variable names. A
valuation ω for variables in x is a function

ω : x → Str ∪ {⊥},

assigning values in Str ∪ {⊥} to variables in x.

Each instance of a schema S can be represented by a pair (S, Ω), where Ω is
a set of valuations for variables occurring in S. However, this representation
is not unique, since elements in instance trees can be grouped and nested in
different ways. By a canonical instance we will understand the instance with
the maximal width, i.e. the instance where subtrees corresponding to valuations
are pair-wise disjoint. For example, the instance I2 in Figure 1 is not canonical
since two authors are nested under one publication. In SixP2P we use canonical
instances to handle XML trees efficiently – in particular to merge XML trees
with discovering missing values.

2.2 Schema Mappings

The key issue in data integration is this of schema mapping. Schema mapping is a
specification defining how data structured under one schema (the source schema)
is to be transformed into data structured under another schema (the target
schema). In the theory of relational data exchange, source-to-target dependencies
(STDs) [2] are usually used to express schema mappings [6].

A schema mapping specifies the semantic relationship between a source
schema and a target schema. We define it as a source-to-target dependency
adapted for XML data [4,15].

Definition 4. A mapping from a source schema S to a target schema T is a
formula of the form

mS→T := ∀x(S(x) ⇒ ∃yT (x′,y)), (2)

where x′ ⊆ x, and y ∩ x = ∅.

The result of a mapping is the canonical instance of the right-hand side schema,
where each variables y ∈ y has the ⊥ (null) value.

Query Propagation in a P2P Data Integration System 49

Example 3. The mapping m31 from S3 to S1 is specified as:

m31 := ∀x1, x2, x3(S3(x1, x2, x3) ⇒ ∃x4S1(x2, x3, x1, x4)).

Then, for I3 = (S3(x1, x2, x3), Ω), where Ω = {(Ann, XML, 2005)}),

m31(I3) = J,

where J = (S1(x1, x2, x3, x4), {(XML, 2005, Ann, ⊥)}).
The set Ω′ = {(XML, 2005, Ann, ⊥)} is created from Ω using variable corre-

spondences specified in the mapping m31.

2.3 Queries and Query Reformulation

Given a schema S, a qualifier φ over S is a formula built from constants, as well
as paths and variables occurring in S. Let mS→T = ∀x(S(x) ⇒ ∃yT (x′,y)) be a
mapping from a source schema S to a target schema T and φ be a query qualifier
over S. A query q over the mapping mS→T with qualifier φ is

q := ∀x(S(x) ∧ φ(x) ⇒ ∃yT (x′,y)). (3)

For short, we will denote a query as q = (mS→T , φ).
Let q = (mS→T , φ) be a query from S to T and I = (S, Ω) be an instance

of S. An answer to a query q(I) is such an instance J = (T, Ω) of T that its
description Ω′ is defined as:

Ω′ = {ω.restrict(x′) ∪ null(y) | ω ∈ Ω ∧ φ(ω) = true}, (4)

where ω.restrict(x′) is the restriction of the valuation ω to the variables in x′,
and null(y) is a valuation assigning nulls to all variables in y.

Example 4. The query

q12 = (mS1(x1,x2,x3,x4)→S2(x1,x3,x4), x3 = “John” ∧ x2 = “2005”),

filters an instance of the source schema S1 according to the qualifier and produces
an instance of the schema S2.

A query is issued by the user against a peer. The user sees the target schema
T (z), and defines a qualifier φ(z), so initially the query is of the form q =
(mT (z)→T (z), φ(z)). When the query is propagated to a source peer with the
schema S(x), it must be reformulated accordingly. Thus, the query is to be
reformulated into a query q′ = (mS(x)→T (x′,y), φ

′(x)).
The reformulation is performed as follows (Figure 2):

1. We want to determine the qualifier φ′(x) over the source schema S(x). To
do this we use the mapping mS(x)→T (x′,y).

2. The qualifier φ′(x) is obtained as the result of rewriting the qualifier φ(z)

φ′(x) := φ(z).rewrite(T (z), T (x′,y)). (5)

The rewriting consists in appropriate replacement of variable names. A vari-
able z ∈ z occurring in φ(z) is replaced by such a variable x ∈ x′ that the
type of z in T (z) is equal to the type of x in T (x′,y). If such x ∈ x′ does
not exist, the query is not rewritable.

50 T. Pankowski

S(x) T(z)

(z)'(x)

S(x) y T(x',y)

'(x):= (z).rewrite(T(z),T(x',y)),

for each z z, replace: z x, such that

x x' and typeT(z)(z) = typeT(x',y)(x)

Fig. 2. Reformulation of a query (mT (z)→T (z), φ(z)) into a query (mS(x)→T (x′,y), φ
′(x))

using the mapping ∀x(S(x) ⇒ ∃yT (x′,y))

Example 5. For the query q11 = (mS1(x1,x2,x3,x4)→S1(x1,x2,x3,x4), x3 = “John”),
we have the following reformulation for its propagation to S2,

q21 = (mS2(x1,x2,x3)→S1(x1,x4,x2,x3), x2 = “John”),

since typeS1(x1,x2,x3,x4)(x3)=typeS1(x1,x4,x2,x3)(x2)=/pubs/pub/author/name.

3 Deciding about Merging and Propagation Modes

In this section we will discuss haw the existence of XML functional dependencies
(XFDs) defined over schemas can influence the way of propagating queries and
merging partial answers. Our aim is the exploitation of functional dependencies
for increasing the amount of information obtained in the process of merging
partial results. While merging data from different sources, we can use XFDs to
discover some missing values, i.e. values denoted by ⊥.

Definition 5. An XML functional dependency (XFD) over a set L of labels and
a set x of variables is an expression with the syntax:

f ::= /P [C]/.../P [C],
P ::= l | P/l,
C ::= TRUE | P = x | C ∧ ... ∧ C,

(6)

where l ∈ L, and x is a variable in x. If variable names are significant, we will
write f(x).

Example 6. XFD over S3 is

f(x2) := /authors/author/paper[title = x2]/year,

meaning that the value of f(x2) is uniquely determined by the values of x2.

Types of variables are defined in the same way as for schemas. Let

f = /P1[C1]/.../Pi[· · · ∧ Pij = xj ∧ · · ·]/.../Pn[Cn],

be an XFD. Then: typef(xj)=/P1/.../Pi/Pij , additionally, type(f)=/P1/.../Pn.
An XFD f(x) says that the value [[f(x)(ω)]] of f(x) according to the XPath

semantics [18], is uniquely determined by a valuation ω of variables in x
Let f(x1, ..., xk) be an XFD over S(x), and x be a variable in x such that

typeS(x) = type(f). An XML tree I = (S(x), Ω) satisfies this XFD, if for any
two valuations ω, ω′ ∈ Ω, the implication holds:

ω(x1, ..., xk) = ω′(x1, ..., xk) ⇒ ω(x) = ω′(x),

i.e. equality of arguments implies the equality of values.

Query Propagation in a P2P Data Integration System 51

Thus, XFD can be used to infer missing value of the variable x in the data
tree that is expected to satisfy this XFD [14]. Let ω and ω′ be two valuations
for variables in x and:

ω(x1, ..., xk) = ω′(x1, ..., xk),
ω(x) = ⊥, and ω′(x) = ⊥.

(7)

Then, we can take ω′(x) := ω(x).
Answers to a query propagated across the P2P systems must be collected

and merged. In the merge operation we incorporate the discovery of missing
values, i.e. null values ⊥ are replaced everywhere where it is possible, and this
replacement is based on XFD constraints.

Thus, it is important to decide which of the following two merging modes
should be selected in the peer while partial answers are to be merged:

– Partial merge – A partial answer q(IS) obtained from the propagation is
merged with the local answer q(IT) over the target schema. The answer is:
Anspart = merge(q(IS), q(IT)).

– Full merge – The whole instance IT in the target peer is merged with received
partial answer q(IS), and then the query is evaluated on the result of the
merge. Then the answer is: Ansfull = q(merge(q(IS), IT)).

It is quite obvious that the full merge is much more costly than the partial
one. However, during full merge more missing values can be discovered. Thus,
it should be performed when there is a chance to discover missing values. The
following Proposition 1 states the sufficient condition when there is no sense in
applying full merge because no missing value can be discovered.

Proposition 1. Let S(x) be a schema,f(z) be an XFD over S(x), and type(f)=
typeS(x) for some x ∈ x. Let q be a query with qualifier φ(y), y ⊆ x, I be the
instance of S and IA an answer to q received from a propagation. Then

q(merge(IA, I)) = merge(q(I), q(IA)). (8)

holds if one of the following two conditions holds

(a) x ∈ y, or
(b) z ⊆ y.

Proof. The equality (8) does not hold if there are valuations ω′ ∈ ΩIA and
ω ∈ ΩI such that ω′(x) = ⊥, ω(x) = ⊥, and ω′(z) = ω(z) (see (7)).

Let us consider conditions (a) and (b):

1. Condition (a). If x ∈ y, then there cannot be ω′ ∈ ΩIA such that ω′(x) = ⊥,
because then φ(y)(ω′) = true. Thus, the theorem holds.

2. Condition (b). Let z ⊆ y. If there is such ω′ ∈ ΩIA that ω′(x) = ⊥, then:
– if φ(y)(ω′) = true then ω′ ∈ Ωq(I) and (8) holds;
– if φ(y)(ω′) = true then ω can belong neither to Ωq(I) nor to Ωq(IA), and

ω is not relevant for discovering missing values. So, (8) holds.

52 T. Pankowski

To illustrate application of the above proposition let us consider a query about
John’s data in peers P2 and P3 in Figure 1.

1. Let q be a query with qualifier φ2 := x2 = “John” in the peer P2. There
is also XFD f2 := /pubs/pub/author[name = x2]/university specified over
S2(x1, x2, x3). In force of Proposition 1 there is no chance to discover any
missing value of John’s university. Indeed, if we obtain an answer with
university = ⊥, then the real value is either in the local answer q(I2) or
it does not occur in I2 at all. So, in P2 the partial merge should be per-
formed. Performing the full join in this case is pointless.

2. Let q be a query with qualifier φ3 := x1 = “John” issued against peer P3.
There is XFD f3 := /authors/author/paper[title = x2]/year specified over
S3(x1, x2, x3). Assumptions of Proposition 1 are not satisfied, so there is a
chance to discover missing values of year using the full merge. Indeed, from
P2 we obtain the answer q(I2) = (S3, {(“John”, “XML”, ⊥)}). The local
answer q(I3) is empty. But performing the full merge and using f3, we obtain:
q(merge((S3, {(“John”, “XML”, ⊥)}), (S3, {(“Ann”, “XML”, “2005”)}))=
(S3, {(“John”, “XML”, “2005”)}). Thus, the year of John’s publication has
been discovered and the using of full merge is justified.

The consequences of Proposition 1 impacts also the way of query propagations.
The P2P propagation (i.e. to all partners with the P2P propagation mode) may
be rejected because of avoiding cycles. However, when the analysis of the query
qualifier and XFD’s shows that there is a chance to discover missing values, the
peer can decide to propagate the query with the local mode (i.e. it expects only
the local answer from a partner, without further propagations). Such behavior
can take place in peer P3 in the case (2) discussed above.

4 Data Integration in SixP2P

4.1 Overall Architecture

SixP2P is built around a set of peers having a common architecture and com-
municating each other by sending (propagating) queries and returning answers.
According to the P2P technology, there is not any central control over peer’s
behavior and each peer is autonomous in performing its operations, such as ac-
cepting queries, query answering and query propagation. Overall architecture of
the system is depicted in Figure 3.

Each peer in SixP2P has its own local database consisting of two parts: data
repository of data available to other peers, and 6P2P repository of data nec-
essary for performing integration processes (e.g., information about partners,
schemas, constraints, mappings, answers). Using the query interface (QI) a user
formulates a query. The query execution module (QE) controls the process of
query reformulation, query propagation to partners, merging of partial answers,
discovering missing values, and returning partial answers [5,13,14,15]. Commu-
nication between peers (QAP) is realized by means of Web Services technology.

Query Propagation in a P2P Data Integration System 53

����
����	
����

��
����	
����

��������������������

������������
�������

��������	���	�
�������
�������

��������������������

������������
�������

��������	���	�
�������
�������

����
����	
����

��
����	
����

��������������������

������������
�������

��������	���	�
�������
�������

����
����	
����

��
����	
����

�

��

� ���
�
���
��!
���������������" #��$%&
'���'� ���#�	��" #��(������
��)��
��

&�*
&�*

&�*

Fig. 3. Overall architecture of SixP2P

4.2 SixP2P Modeling Concepts

Basic notions constituting the SixP2P data model are: peers, data sources,
schemas, constraints, mappings, queries, answers, and propagations.

1. A peer, @p, is identified by its URL address identifying also the Web Ser-
vice representing the peer. There are two methods exported by a peer:
sendAnswer – used by peers to send to @p the answer to a query received
from @p, and propagateQuery – used by peers to send to @p a query to be
answered (possibly with further propagations).

2. A data source is an XML document or an XML view over a centralized or
distributed data. Different techniques can be used to implement such a view
– it can be AXML documents [1,11], a gateway to another SixP2P system
or even to different data integration systems. Thus, a community of various
collaborating information integration engines can be created.

3. A schema is used to specify structural properties of the data source and also
the structure of the intermediate answers to queries. In SixP2P, schemas are
defined as tree-pattern formulas discussed in previous sections.

4. Constraints delivers additional knowledge about data. Two kinds of con-
straints are taken into consideration: XML functional dependencies (XFD)
and XML keys [3,15]. XFD will be used to control query propagation and
answer merging (especially to discover some missing data), and keys for
eliminating duplicates and appropriate nesting of elements. In this paper we
restrict ourselves to XFDs.

5. Mappings specify how data structured under a source schema is to be trans-
formed into data conforming to a target schema [6,14]. Information provided
by mappings is also used to query reformulation. In [14] we presented algo-
rithms translating high level specifications of mappings, queries and con-
straints into XQuery programs.

54 T. Pankowski

6. A query issued against a peer can be split up to many query threads –
one query threads for one trace incoming to the peer (corresponding to
one propagation). Partial answers to all query threads are merged to pro-
duce the answer to the query. A peer can receive many threads of the same
query.

7. An answer is the result of query evaluation. There are partial and final an-
swers. A partial answer is an answer delivered by a partner who the query
was propagated to. All partial answers are merged and transformed to ob-
tain the final answer. In some cases (when the peer decides about discovering
missing values, see Section 3), a whole peer’s data source may be involved
into the merging process. In [13] we discuss a method of dealing with hard
inconsistent data, i.e. data that is other than null and violates XFDs. The
method is based on trustworthiness of data sources.

8. A propagation is a relationship between a peer (the target peer) and an-
other peer (the source peer) where the query has been sent (propagated)
to. While propagating queries, the following three objectives are taken into
account: (1) avoiding cycles, (2) deciding about propagation modes (P2P
or local), and (3) deciding about merging modes (full or partial) (see
Proposition 1).

4.3 SixP2P Database

A peer’s database (PDB) consists of five tables: Peer, Constraints, Partners
(Figure 4), Queries, and Propagations (Figure 5).

– Peer(myPeer, myPatt, myData, xfdXQuery, keyXQuery)–has exactly one
row, where: myPeer – the URL of the peer owning the database; myPatt
– the schema (tree-pattern formula) of the data source; myData – the
peer’s data source, i.e. an XML documents or an XML view over some data
repositories. xfdXQuery and keyXQuery are XQuery programs obtained
by the translation of constrain specifications, XFDs and keys, respectively
[14].

– Constraints(constrId, constrT ype, constrExp) – stores information about
the local data constraints (in this paper we discuss only XFDs).

– Partners(partPeer, partPatt, mapXQuery) – stores information about all
peer’s partners (acquaintances), where: partPeer – the URL of the partner;
partPatt – the right-hand side of the schema mapping to the partner (vari-
able names reflect correspondences between paths in the source and in the

���������	
������������������������ �������	��������������������

�������	���
���

�����

�������������������������

�������

Fig. 4. Structure of tables Peer, Constraints and Partners

Query Propagation in a P2P Data Integration System 55

target schema). mapXQuery is an XQuery program obtained by translation
of the mapping determined by the Peer.myPatt and Partners.partPatt[14].

– Queries and Propagations (Figure 5) maintain information about queries,
qryId, and their threads, qryThreadId, managed in the SixP2P system.
The user specifies a qualifier of the query, myQualif , as well as propagation
(propagMode) and merging (mergeMode) modes.

12.myXQuery

11.state

i10.tgtAnswer

9.tgtThreadId

8.tgtPropagId

g7.mergeMode

f6.propagMode

e5.myQualif

@p''4.tgtPeer

c3.qryTrace

b2.qryId

a1.qryThreadId

@p:Queries

5.state

i4.srcAnswer

@p’3.srcPeer

a2.qryThreadId

h1.propagId

@p:Propagations

12.myXQuery

11.state

i10.tgtAnswer

a9.tgtThreadId

h8.tgtPropagId

g7.mergeMode

f'6.propagMode

e’5.myQualif

@p4.tgtPeer

c@p3.qryTrace

b2.qryId

a'1.qryThreadId

@p’:Queries

1..*1

rewriting

=

merging

sending the answer

identifies the row where

to send the answer

Fig. 5. Queries and Propagations tables in SixP2P. Sample data illustrates instances
of tables when a query is propagated from a peer @p to a peer @p′.

Symbolic values in tables (Figure 5) indicate relationships between tuples
in tables maintained by peers @p and @p′. Algorithm 1 describes propagation
of a query (more precisely, a thread of the query) stored in @p : Queries. The
propagation mode can be either P2P (a query is to be propagated to all partners
with P2P mode), or local (a query is to be answered in the peer’s data source
without propagation).

Tuple q1 contains a query and its context (e.g. q1.myPatt is a schema against
which q1.myQualif has been formulated). LeadsToCycle(q1, @p′) returns true
if the propagation causes a cycle, i.e. @p′ occurs in q1.qryT race. discovery
MayBeDone(q1, @p) is true if the hypothesis of Proposition 1 does not hold.
acceptedPropagation(q1, @p′) is true if @p′ accepts the propagation of q1 with
given parameters.

If the source peer @p′ accepts a propagation q1 then it creates the following
tuple q2 and inserts it into the @p′ : Queries table:

56 T. Pankowski

Algorithm 1 (query propagation)

Input: @p – a current peer; @p : Peer, @p : Partners,
@p : Queries, @p : Propagations – tables on the peer @p;

Output: New states of tables @p : Queries and @p : Propagations
if a partner peer @p′ accepts the propagation.

q :=@p:Queries; // a row describing the query thread to be propagated
if q.propagMode=’P2P’ {

q1 := new propagationParametersType;
// used to prepare propagations to all partners

q1.propagId := new propagId;
q1.qryThreadId := q.qryThreadId;
q1.qryId := q.qryId;
q1.qryT race := q.qryT race + @p;

// the sequence of visited peers used to avoid cycles
q1.myPeer := @p; // the peer where the answer should be returned
q1.myQualif := q.myQualif ; // the query qualifier
q1.propagMode := “P2P”;
q1.mergeMode := q.mergeMode;
q1.myPatt := @p:Peer.myPatt; // the schema of @p
foreach @p′ in @p:Partners.partPeer
{ // attempt to propagate the query to all partners

if LeadsToCycle(q1, @p′) and not discoveryMayBeDone(q1, @p)
then next

if LeadsToCycle(q1, @p′) then q1.propagMode := “local”;
if acceptedPropagation(q1, @p′) then

insert into @p:Propagations
values (q1.propagId, q1.qryThreadId, @p′, null, “Waiting”) }

}

5 Conclusions

The paper presents a method for schema mapping and query reformulation in
a P2P XML data integration system. The discussed formal approach enables
us to specify schemas, schema constraints, schema mappings, and queries in a
uniform and precise way. We discussed some issues concerning query propagation
strategies and merging modes, when missing data is to be discovered in the
P2P integration processes. The approach is implemented in SixP2P system. We
presented its general architecture, and sketched the way how queries and answers
were sent across the P2P environment.

Acknowledgement. The work was supported in part by the Polish Ministry of
Science and Higher Education under Grant N516 015 31/1553.

Query Propagation in a P2P Data Integration System 57

References

1. Abiteboul, S., Benjelloun, O., Manolescu, I., Milo, T., Weber, R.: Active XML:
Peer-to-Peer Data and Web Services Integration. In: VLDB, pp. 1087–1090. Mor-
gan Kaufmann, San Francisco (2002)

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

3. Arenas, M.: Normalization theory for XML. SIGMOD Record 35(4), 57–64 (2006)
4. Arenas, M., Libkin, L.: XML Data Exchange: Consistency and Query Answering.

In: PODS Conference, pp. 13–24 (2005)
5. Brzykcy, G., Bartoszek, J., Pankowski, T.: Schema Mappings and Agents’ Actions

in P2P Data Integration System. Journal of Universal Computer Science 14(7),
1048–1060 (2008)

6. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing Schema Mappings:
Second-Order Dependencies to the Rescue. In: PODS, pp. 83–94 (2004)

7. Fuxman, A., Kolaitis, P.G., Miller, R.J., Tan, W.C.: Peer data exchange. ACM
Trans. Database Syst. 31(4), 1454–1498 (2006)

8. Koloniari, G., Pitoura, E.: Peer-to-peer management of XML data: issues and
research challenges. SIGMOD Record 34(2), 6–17 (2005)

9. Madhavan, J., Halevy, A.Y.: Composing Mappings Among Data Sources. In:
VLDB, pp. 572–583 (2003)

10. Melnik, S., Bernstein, P.A., Halevy, A.Y., Rahm, E.: Supporting Executable Map-
pings in Model Management. In: SIGMOD Conference, pp. 167–178 (2005)

11. Milo, T., Abiteboul, S., Amann, B., Benjelloun, O., Ngoc, F.D.: Exchanging inten-
sional XML data. ACM Trans. Database Syst. 30(1), 1–40 (2005)

12. Ooi, B.C., Shu, Y., Tan, K.-L.: Relational Data Sharing in Peer-based Data Man-
agement Systems. SIGMOD Record 32(3), 59–64 (2003)

13. Pankowski, T.: Reconciling inconsistent data in probabilistic XML data inte-
gration. In: British National Conference on Databases (BNCOD 2008). LNCS,
vol. 5071, pp. 75–86. Springer, Heidelberg (2008)

14. Pankowski, T.: XML data integration in SixP2P – a theoretical framework. In:
EDBT Workshop Data Management in P2P Systems (DAMAP 2008), pp. 1–8.
ACM Digital Library (2008)

15. Pankowski, T., Cybulka, J., Meissner, A.: XML Schema Mappings in the Presence
of Key Constraints and Value Dependencies. In: ICDT 2007 Workshop EROW
2007, CEUR Workshop Proceedings. CEUR-WS.org, vol. 229, pp. 1–15 (2007)

16. Tatarinov, I., Halevy, A.Y.: Efficient Query Reformulation in Peer-Data Manage-
ment Systems. In: SIGMOD Conference, pp. 539–550 (2004)

17. Tatarinov, I., Ives, Z.G., Madhavan, J., Halevy, A.Y., Suciu, D., Dalvi, N.N., Dong,
X., Kadiyska, Y., Miklau, G., Mork, P.: The Piazza peer data management project.
SIGMOD Record 32(3), 47–52 (2003)

18. XML Path Language (XPath) 2.0 (2006), http://www.w3.org/TR/xpath20
19. Yu, C., Popa, L.: Constraint-Based XML Query Rewriting For Data Integration.

In: SIGMOD Conference, pp. 371–382 (2004)

http://www.w3.org/TR/xpath20

	Introduction
	Pattern-Based Schemas, Mappings and Queries
	Schemas
	Schema Mappings
	Queries and Query Reformulation

	Deciding about Merging and Propagation Modes
	Data Integration in SixP2P
	Overall Architecture
	SixP2P Modeling Concepts
	SixP2P Database

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

