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Abstract. The problem of dealing with inconsistent data while inte-
grating XML data from different sources is an important task, necessary
to improve data integration quality. Typically, in order to remove incon-
sistencies, i.e. conflicts between data, data cleaning (or repairing) pro-
cedures are applied. In this paper, we present a probabilistic XML data
integration setting. A probability is assigned to each data source and its
probability models the reliability level of the data source. In this way, an
answer (a tuple of values of XML trees) has a probability assigned to
it. The problem is how to compute such probability, especially when the
same answer is produced by many sources. We consider three semantics
for computing such probabilistic answers: by-peer, by-sequence, and by-
subtree semantics. The probabilistic answers can be used for resolving a
class of inconsistencies violating XML functional dependencies defined
over the target schema. Having a probability distribution over a set of
conflicting answers, we can choose the one for which the probability of
being correct is the highest.

1 Introduction

In general, in data integration systems (especially in P2P data management
[12,13]) violations of consistency constraints cannot be avoided [10,15]. Data
could violate consistency constraints defined over the target schema, although
it satisfies constraints defined over source schemas considered in separation. In
the paper we focus on XML functional dependencies as constraints over XML
schemas. From a set of inconsistent values violating the functional dependency we
choose one which is most likely to be correct. The choice is based on probabilities
of data. We propose a model of calculating such probabilities using the reliability
levels assigned to data sources.

Related Work. Dealing with inconsistent data is the subject of many work
known as data cleaning [14] and consistent query answering in inconsistent
databases [2]. There are two general approaches to resolve conflicts in incon-
sistent databases [4,8,9]: (1) the user provides a procedure deciding how the
conflicts should be resolved; (2) some automatic procedures may be used – the
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procedures can be based on timestamps (outdated data may be removed from
consideration) or reliability of data (each conflicting data has a probability of
being correct assigned to it). A model based on reliabilities of data sources was
discussed in [16] and was used for reconciling inconsistent updates in collabo-
rative data sharing. In [6], authors develop a model of probabilistic relational
schema mappings. Because of the uncertainty about which mapping is correct,
all the mappings are considered in query answering, each with its own prob-
ability. Two semantics for probabilistic data are proposed in [6]: by-table and
by-sequence semantics. Probabilities associated to data are then used to rank
answers and to obtain top-k answers to queries in such a setting.

In this paper, we discuss a probabilistic XML data integration setting, where
the probability models reliability levels of data sources. Based on these we cal-
culate probabilities associated with answers (probabilistic answers) to queries
over the target schema. We propose three semantics for producing probabilistic
answers: by-peer, by-sequence (of peers), and by-subtree semantics. Two first of
them are based on by-table and by-sequence semantics proposed in [6], but the
interpretation of probabilistic mappings as well as data integration settings are
quite different.

The main novel contribution of this paper is the introduction of the by-subtree
semantics. This semantics takes into account not only sources where the answer
comes from, but also contexts in which it occurs in data sources. Thanks to this,
the method has the advantage over other methods because the computation of
the probability is more sensitive to contexts of data in interest.

In Section 2 we introduce a motivating example and illustrate basic ideas of
reconciling inconsistent data in a data integration scenario. We show the role
of XML functional dependencies and probabilistic answers in reconciliation of
inconsistent data. In Section 3 we discuss XML schemas and XML data (XML
trees). Schema mappings and queries for XML data integration are described
in Section 4 and Section 5, respectively. In Section 6, schema mappings are
generalized to probabilistic schema mapping. They are used to define probabilistic
answers to queries. Section 7 concludes the paper.

2 Reconciliation of Inconsistent Data

To illustrate our approach, let us consider Figure 1, where there are three peers
P1, P2, and P3 along with schema trees, S1, S2, S3, and schema instances I1, I2,
and I3, respectively.

Over S3 the following XML functional dependency (XFD) [1] can be defined

/authors/author/book/title →
/authors/author/book/year,

(1)

meaning that a text value (a tuple of text values) of the left-hand path (tuple
of paths) uniquely determines the text value of the right-hand path. Let J be
an instance of S3. If in J there are two subtrees of type /authors/author/book



Reconciling Inconsistent Data in Probabilistic XML Data Integration 77

�������

�������

	�
� ����

����� �����

�����

����

����

����� ����� �������

	�
� �	���������

�����

����

���

�����
�����

������

	�
�
�����

�	��������
����

���

������

	�
�
�	
���

����
����

�����
�����

����
����

���

����

����

��������� �������

	�
�

�����

�	���������

����

���

�����
����

������

	�
�
�����

���

������

	�
�
�	
���

����
����

�����
�����

����
����

���

�	��������
����

����������

���

�����
�����

����
����

	�
�
�	
���

���

�����
����

����
����

������

	�
�
�����

���

�����
�����

����
����

������

Fig. 1. XML schema trees S1, S2, S3, and their instances I1, I2 and I3, located in peers
P1, P2, and P3

which have equal values of title, say t, and different values of year, say y1 and
y2, then we say that the set Ct

Ct = {(/authors/author/book/title : t, /authors/author/book/year : y1),
(/authors/author/book/title : t, /authors/author/book/year : y2)}

is inconsistent with respect to the XFD (1). Further on, the paths labeling values
will be omitted, so we will write Ct = {(t, y1), (t, y2)}.

Our aim is to choose such a tuple (t, y) ∈ Ct, that can be treated as the
most reliable of all tuples belonging to the inconsistent set Ct. The process of
selecting such a tuple is called reconciliation of inconsistent data. To this order
we will consider three different ways for computing probabilities for any tuple
belonging to Ct, where the probability reflects trustworthiness of being correct
for the corresponding tuple. Finally, a tuple with the highest probability will be
selected.

To build a probabilistic XML data integration setting, it will be assumed that a
numeric reliability level [16] is assigned to every peer’s partner and the following
trust policy is applied:

1. A vector r1, ..., rn of reliability levels is assigned to source schemas S1, ..., Sn,
with respect to the target schema T , Σn

i=1ri = 1. A value ri is treated as the
trustworthiness of data obtained from the source Si.

2. Reliability level will be understood as probability which will be assigned to
the mapping mi from a source schema Si to the target schema T . In this
way we can say about probabilistic schema mappings.

Now, assume that we are interested in all pairs (title, year) and that the
appropriate query q has been issued against the schema S3 on the peer P3.
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Table 1. Answers to the query q

S1 (0.5) (C#, 2006), (XML, 2005)

S2 (0.2) (XML, 2004), (XML, 2004)

S3 (0.3) (XML, 2004), (SQL, 2004), (C#, 2005)

Assume that reliability levels of sources S1, S2, and S3 are 0.5, 0.2, and 0.3,
respectively. In Table 1 there are answers returned from the three sources.

We have seven answers, where some of them are duplicated. The answers can
be clustered into the following sets:

CXML = {(XML, 2005), (XML, 2004)},
CC# = {(C#, 2006), (C#, 2005)},
CSQL = {(SQL, 2004)},

where CXML and CC# are inconsistent. Thus, we have to decide which of two
answers (XML, 2005) or (XML, 2004) is more certain, similarly for (C#, 2006)
and (C#, 2005). As the measure of uncertainty we assign probabilities to an-
swers, where probabilities are calculated using reliability levels of data sources.

To calculate probability of data in the target instance, the following three
semantics will be discussed: by-peer, by-sequence, and by-subtree semantics.

By-peer semantics.

Any mapping is considered as a separate event in the space of elementary
events. Then probability of data depends only on the peer (data source) where
the data comes from. If the same data comes from many sources then its prob-
ability is the sum of probabilities of these sources. In [6] this way of creating
probabilistic data is referred to as by-table semantics.

In Table 3 we can find probabilities of answers according to the by-peer se-
mantics. Note that the fact that the tuple (XML, 2004) is returned two times
from S2, has no impact on the final probability of this tuple.

By-sequence semantics.

In this approach, any sequence of mappings (of a given length) is considered
as a separate event in the space of elementary events. Then probability of data
depends not only on the mapping creating the data but also on the context
in which it is created. In [6], this way of creating probabilistic data is called
by-sequence semantics.

In Table 2 there are sequences of mappings of length 2, where a sequence
(mi, mj) maps an instance, (Ii, Ij) of the pair of schemas (Si, Sj) into an in-
stance J of the schema S3, 1 ≤ i, j ≤ 3. The probability of each sequence is
the multiplication of probabilities of composing mappings, e.g. Prob(m1, m3) =
Prob(m1) ∗ Prob(m3) = 0.15. Using probabilities of sequences, we can deter-
mine probabilities of answers to q. The probability of an answer is the sum of
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Table 2. Calculation of probabilities for (XML, 2004) and (XML, 2005) in the by-
sequence and by-subtree semantics

Seq Prob (XML, 2004) (XML, 2004) (XML, 2005) (XML, 2005)
by-sequence by-subtree by-sequence by-subtree

(m1, m1) 0.25 N N Y Y

(m1, m2) 0.10 Y Y Y N

(m1, m3) 0.15 Y N Y N

(m2, m1) 0.10 Y Y Y Y

(m2, m2) 0.04 Y Y N N

(m2, m3) 0.06 Y Y N N

(m3, m1) 0.15 Y Y Y Y

(m3, m2) 0.06 Y Y N N

(m3, m3) 0.09 Y Y N N

Table 3. Probabilities of answers to q in three semantics

Tuple By-peer By-sequence By-subtree

(C#, 2006) 0.5 0.75 0.5

(XML, 2005) 0.5 0.75 0.5

(XML, 2004) 0.5 0.75 0.6

(SQL, 2004) 0.3 0.51 0.3

(C#, 2005) 0.3 0.51 0.3

probabilities of these sequences which return the answer (denoted in the relevant
columns in Table 2 by Y ). Observe that, like in the case of by-peer semantics,
the probability of an answer does not depend on the number of occurrences of
the answer in the source.

By-subtree semantics.

In this method we also consider sequences of mappings, but probabilities of
answers are computed in a different way. Our aim is to make the probability of
an answer dependent on the number of contexts in which the answer occurs. For
example, (XML, 2004) occurs in two contexts within I2 (and also in the target
instance J = I1∪I2∪I3), i.e. in the context of ”Ann” and the context of ”John”.
A context will be understood as a subtree (a highest-level subtree) in the target
instance J . The subtree is identified by a key value. There are two subtrees in
our running example, the Ann-subtree, and the John-subtree, corresponding to
key values ”Ann” and ”John”, respectively. The subtrees are ordered in the
document order.

Let (a1, ..., as) be a tuple of key values determining subtrees in the target
instance J . Let (m1, ..., ms) be a sequence of mappings from source instances
to J . The probability of the sequence (m1, ..., ms) is taken into account while
computing probability of an answer ans, if ans is inserted into the ai-subtree by
the mapping mi, for some 1 ≤ i ≤ s.
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For example, the sequence (m1, m3) returns (XML, 2004). However, it is re-
turned by the second mapping, i.e. m3, and inserted into the first subtree, i.e.
the Ann-subtree. Thus, the probability of (m1, m3) is not taken into account
while computing the probability of (XML, 2004) (see Table 2) according to the
by-subtree semantics – denoted by N in the by-subtree column. However, it is
taken into account by the by-sequence semantics.

In comparison to the by-peer and by-sequence semantics, the by-subtree better
assess trustworthiness of answers. It takes into account the number of contexts in
which the answer occurs. For example, since (XML, 2004) occurs in two contexts
in the source I2, the by-subtree semantics takes it into account and in the result
its probability is higher than this of (XML, 2005).

3 XML Schemas and Instances

In this paper, XML schemas will be specified by tree-pattern formulas [3,13]. It
means that we will restrict ourselves to a subset of XML schemas – namely, to
schemas without recursions and alternatives.

Definition 1. A schema over a set L of labels conforms to the syntax:

S ::= /l[E]
E ::= l = x | l[E] | E ∧ ... ∧ E,

(2)

where l ∈ L, and x is a variable. If variable names are significant, we will write
S(x), where x is a vector of text-valued variables.

Example 1. The schema S3 in Figure 1 has the following specification:
S3(x1, x2, x3) := /authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]].

An XML database consists of a set of XML data. We define XML data as an
unordered rooted node-labeled tree (XML tree) over a set L of labels, and a set
Str ∪ {⊥} of strings and the distinguished null value ⊥ (both strings and the
null value, ⊥, are used as values of text nodes).

Definition 2. An XML tree I is a tuple (r, Ne, N t, child, λ, ν), where:

– r is a distinguished root node, Ne is a finite set of element nodes, and N t is
a finite set of text nodes;

– child ⊆ ({r} ∪ Ne) × (Ne ∪ N t) – a relation introducing tree structure into
the set {r} ∪ Ne ∪ N t, where r is the root, each element node has at least
one child (which is an element or text node), text nodes are leaves;

– λ : Ne → L – a function labeling element nodes with names (labels);
– ν : N t → Str ∪ {⊥} – a function labeling text nodes with text values from

Str or with the null value ⊥.

It will be useful to perceive an XML tree I with schema S over variables x, as
a pair (S, Ω) (called a description), where S is the schema, and Ω is a set of
valuations of variables in x. A valuation ω ∈ Ω is a function assigning values
from Str ∪ {⊥} to variables in x, i.e. ω : x → Str ∪ {⊥}.
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Example 2. The instance I3 in Figure 1 can be represented by the following
description:
I3 :=(S3(x1, x2, x3),{(Ann, XML, 2004),(Ann, SQL, 2004),(John, C#, 2005)}).
An XML tree I satisfies a description (S, Ω), denoted I |= (S, Ω), if I satisfies
(S, ω) for every ω ∈ Ω, where this satisfaction is defined as follows:

Definition 3. Let S be a schema over x, and ω be a valuation for variables in
x. An XML tree I satisfies S by valuation ω, denoted I |= (S, ω), if the root r
of I satisfies S by valuation ω, denoted (I, r) |= (S, ω), where:

1. (I, r) |= (/l[E], ω), iff ∃n ∈ Ne child(r, n) ∧ (I, n) |= (l[E], ω);
2. (I, n) |= (l[E], ω), iff λ(n) = l and ∃n′ ∈ Ne(child(n, n′) ∧ (I, n′) |= (E, ω));
3. (I, n) |= (l = x, ω), iff λ(n) = l and ∃n′ ∈ N t(child(n, n′) ∧ ν(n′) = ω(x));
4. (I, n) |= (E1 ∧ ... ∧ Ek, ω), iff (I, n) |= (E1, ω) ∧ · · · ∧ (I, n) |= (Ek, ω).

A description (S, Ω) represents a class of S instances with the same set of values
(the same Ω), since elements in instance trees can be grouped and nested in
different ways. By a canonical instance we will understand the instance with the
maximal width, i.e. the instance where subtrees corresponding to valuations are
pair-wise disjoint. For example, I1 and I2 in Figure 1 are canonical, whereas I3

is not since two books are nested under one author. A canonical instance may
be transformed into a required form using specification of keys [13].

4 Schema Mappings

A schema mapping specifies the semantic relationship between a source schema
and a target schema. We define it as a source-to-target dependency [3,7,13].

Definition 4. A mapping from a source schema S to a target schema T is an
expression of the form

m := ∀x(S(x) ⇒ ∃yT (x′,y)), (3)

where x′ ⊆ x, and y ∩ x = ∅.
A mapping defines one-to-one correspondence between source and target paths.
Variable names are used to indicate correspondences between paths bound to
variables. In practice, a correspondence also involves a function that transforms
values of source and target variables. Using such functions we can express many-
to-one and many-to-many correspondences. However, in this paper these func-
tions are irrelevant to our discussion, so they will be omitted.

Example 3. The mapping from S3 to S2 is:
∀x1, x2, x3(/authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]] ⇒
∃x4/pubs[pub[title = x2 ∧ year = x3 ∧ writer[name = x1 ∧ university = x4]]]).

In the following mappings we will omit quantifications.
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Example 4. m1, m2, and m3 are mappings from S1 to S3, S2 to S3, and S3 to
S3, respectively:

m1 := /books[book[year=x1 ∧ title=x2∧ author[name=x3∧ university = x4]
⇒ /authors[author[name = x3 ∧ book[title = x2 ∧ year = x1]]]

m2 := /pubs[pub[title =x1∧ year=x2 ∧ writer[name = x3 ∧ university = x4]]]
⇒ /authors[author[name = x3 ∧ book[title = x1 ∧ year = x2]]]

m3 := /authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]]
⇒ /authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]]

A schema mapping m from a source schema S to a target schema T expresses
a constraint, which is or is not satisfied by a pair (I, J) of XML trees, where I
and J are instances of S and T , respectively.

Definition 5. A pair (I, J) of XML trees satisfies a mapping m, (I, J) |= m,
if for any valuation ω of variables in x there is a valuation σ of variables in y
such that:

I |= (S, ω) ⇒ J |= (T, (ω′, σ)),

where ω′ is the restriction of ω to the set x′, denoted ω′ = ω[x′]. Then we say
that J is consistent with I and m.

In general, there may be zero or many different target instances J consistent
with a given source instance I and a given mapping m [7,3].

Definition 6. An XML data integration setting (XDI) is a triple (S, T,MST ),
where:

– S = (S1, ..., Sn) – an ordered set of source schemas;
– T – a target schema,
– MST = (m1, ..., mn) – a set of mappings; mi is a mapping from Si to T .

The following definition specifies the notion of consistency between a target
instance J , a set of source instances (I1, ..., In) (called a complex source instance
I), and a given set of mappings (m1, ..., mn).

Definition 7. Let MST = (m1, ..., mn) be a set of mappings, where mi is a
mapping from Si to T . Let I = (I1, ..., In) be an instance of (S1, ..., Sn). We say
that a pair (I, J) satisfies MST , denoted (I, J) |= MST , if for each mi, J is
consistent with Ii and mi. Then J is said to be consistent with I and MST .

5 Queries and Answers

In this paper we consider queries which return tuples of values (valuations) as
opposed to arbitrary trees (like in [3]).

Definition 8. A query over a target schema T (x′), is an expression of the form

q := {x | ∃x′′T (x′)}, (4)

where x,x′′ ⊆ x′, x ∩ x′′ = ∅.
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Example 5. ”Get all pairs (title,year)”, can be expressed by the following query
over the schema S3:

{(x2, x3) | ∃x1(/authors[author[name = x1 ∧ book[title = x2 ∧ year = x3]]])}
Definition 9. Let q(x) be a query over a schema T (x′) and J be an instance of
T . A valuation ω of x is an answer to q against J , denoted ω ∈ q(J), if there is
a valuation ω′ of x′ such that J |= (T, ω′) and ω = ω′[x], i.e. ω is the restriction
of ω′ on x.

Now, let us consider an answer to a query in an XML data integration setting.
Such answers in data integration settings are referred to as certain answers [11].

Definition 10. Let q(x) be a query over the target schema T in an XDI
(S, T,MST ). Let I be an instance of S. A valuation ω of x is an answer (a
certain answer) to q against I, if ω is an answer to q against every J , where J
is the target instance consistent with I and MST , denoted ω ∈ q(MST (I)).

6 Probabilistic XML Data Integration Setting

Probabilistic schema mapping describes a probability distribution of a set of
(ordinary) schema mappings. As we mentioned in Section 2, the probability of a
mapping is equal to the probability (modeling the reliability) of the data source
(peer) that is the domain of the mapping. In this way we define a probabilistic
XML data integration setting.

Definition 11. A probabilistic XML data integration setting (pXDI) is a
quadruple (S, T,MST , P rob), where (S, T,MST ) is an ordinary XDI, and Prob
is a probability function over MST such that for each m ∈ MST :

– Prob(m) ∈ [0, 1], and
– Σm∈MST Prob(m) = 1.

An answer to a query q in a pXDI is a pair (ω, p), where ω is an answer to q
in ordinary XDI and p is a probability assigned to ω. The probability models
uncertainty about haw reliable is data provided by ω. Three methods can be used
to compute this probability: by-peer and by-sequence semantics, which are based
on the by-table and by-sequence semantics proposed in [6], and by-subtree a new
semantics proposed in this paper. These semantics were informally discussed in
Section 2.

6.1 By-Peer Semantics

Let (S, T,MST , P rob) be a pXDI and I be a source instance of S. In the by-peer
interpretation, all the data from one source has the probability determined by
the probability of the mapping defined on this data source. The probability of an
answer ω ∈ q(MST (I)) is the sum of the probabilities of all mappings producing
this answer.
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For example, answers in Table 1 are produced by mappings m1, m2, and m3

with probabilities 0.5, 0.2, and 0.3, respectively. The probabilities of answers,
i.e. of tuples (title, year), are given in Table 3.

Definition 12. Let q be a query over T in (S, T,MST , P rob). Let I be an in-
stance of S. Let m(ω) be the subset of MST , such that for each m ∈ m(ω),
ω ∈ q(m(I)) (if m is a mapping from Si to T , then m(I) = m(Ii)).

Let p = Σm∈m(ω)Prob(m). Then we say that the pair (ω, p) is a by-peer
answer to q with respect to I and (S, T,MST , P rob).

6.2 By-Sequence Semantics

In contrast to the by-peer semantics, where all the mappings were considered
in separation, in the by-sequence model we will consider sequences of mappings.
Thus, if there are n mappings (and also n peers and n data sources), we can
analyze sequences with length s of (not necessarily distinct) mappings, s ≥ 1.

In general, if we have n mappings, then there are ns sequences of length s.
Let (MST , P rob) be a probabilistic mapping. By seqs(MST ) will be denoted
the set of all sequences of lengths s created from mappings in MST . Then we
can think of every sequence seq ∈ seqs(MST ) as a separate event. Probabilities
assigned to sequences satisfy the following formulas:

Prob(seq) = Πm∈seqProb(m),
Σseq∈seqs(MST )Prob(seq) = 1.

Each sequence seq ∈ seqs(MST ) creates an instance of the target schema
T . This instance will be denoted by Jseq = seq(I) =

⋃
m∈seq m(I) and it is

consistent with I and seq, i.e.:

– for each mk ∈ seq, Jseq is consistent with Ik and mk,
– for each ω, if Jseq |= (T, ω) then there is mk ∈ seq such that Ik |= (Sk, ω).

In our running example, we consider sequences of length 2. There are 9 such
sequences (see Table 2). According to the above considerations, an answer in the
by-sequence semantics is defined as follows:

Definition 13. Let q be a query over T in (S, T,MST , P rob). Let I be an in-
stance of S. Let seq(ω) be the subset of seqs(MST ), such that for each seq ∈
seq(ω), ω ∈ q(seq(I)).

Let p = Σseq∈seq(ω)Prob(seq). Then we say that the pair (ω, p) is a by-
sequence answer to q with respect to I and (S, T,MST , P rob).

In Table 3 there are also probabilistic answers according to the by-sequence
semantics in our running example.

6.3 By-Subtree Semantics

While computing a probabilistic answer in the by-subtree semantics we take into
account that the answer may occur in many contexts in the target instance. The



Reconciling Inconsistent Data in Probabilistic XML Data Integration 85

more contexts in which the answer occurs the highest is the probability of the
answer (i.e. the answer is more likely to be correct). Note that the by-peer and
by-sequence semantics are not sensitive to the number of contexts containing the
considered answer.

As the contexts we assume the highest-level subtrees in the target instance.
The subtree is identified by an absolute XML key [5] or a key functional depen-
dency [1,13]. For example, for the schema S3 we can define the key functional
dependence /authors/author/name → /authors/author. In our approach this
key functional dependency can be equivalently expressed by the following path
formula [13]:

κ(x1) := /authors/author[name = x1] (5)

meaning that for a given value of x1, the value of κ(x1) contains at most one
node (the root of the subtree of type /authors/author determined by x1). Then
an instance of S3 contains as many subtrees, of type /authors/author, as there
are different text values of the path /authors/author/name.

In our running example we have two subtrees determined by ”Ann” and
”John”, respectively. Thus, we can consider sequences of length 2 of mappings as
in the by-sequence semantics. However, we will use another semantics to compute
probabilities of answers (as was informally discussed in Section 2).

Similarly as in by-sequence semantics, let q be a query over a target schema T ,
I = (I1, ..., In) be an instance of (S1, ..., Sn), and (MST , P rob) be a probabilistic
mapping. Let J be an instance of T with s subtrees, and let J be by-sequence
consistent with I and MST . Let κ(z) be the key definition over S, where z is a
vector of text variables. Then there are s different values of z, say a1,..., as.

In the by-subtree semantics, probabilistic answers of q are defined as follows:

Definition 14. Let subtree(ω) be the subset of seqs(MST ), such that for each
seq = (m1, ..., ms) ∈ subtree(ω)

ω ∈ q[z �→ a1](m1(I))) ∪ · · · ∪ q[z �→ as](ms(I))),

where q[z �→ ai] is a query created from q by substituting variables in z (the key
variables) by text values from the vector ai.

Let p = Σseq∈subtree(ω)Prob(seq). Then we say that ω is a by-sebtree answer
to q with probability p, with respect to I and (MST , P rob).

Example 6. For the sequence (m1, m2) of mappings (Example 4), the query q
(Example 5), and the key (5), we have (compare Table 2):

q[x1 �→ ”Ann”](m1(I1)) = {(C#, 2006)},
q[x1 �→ ”John”](m2(I2)) = {(XML, 2004)}.

7 Conclusion

In this paper we discussed an approach to probabilistic XML data integration
systems. We use probabilities to model reliabilities of data sources and use them
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to compute probabilistic answers. We discuss three ways to determine probabilis-
tic answers: by-peer, by-sequence, and by-subtree semantics. We claim that the
by-subtree semantics has the advantage over two others, since it more precisely
computes probabilistic answers. This is significant contribution of this paper.
Probabilities associated to inconsistent answers can be used to select these which
are more likely to be correct and can be used to resolve inconsistencies violating
XML functional dependencies.
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