
1

XML schema mappings using schema
constraints and Skolem functions ?

Tadeusz Pankowski1,2

1 Institute of Control and Information Engineering,
Poznań University of Technology, Poland

2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland
email: tadeusz.pankowski@put.poznan.pl

Summary. A schema mapping is an executable specification describing transforma-
tion of data structured under different schemas. In this paper we discuss the problem
of automatic generation of XML schema mappings using information provided by
schemas and correspondences between schemas. Mappings are specified in a mapping
language XDMap whose constructs are based on Skolem functions. We use Skolem
functions with text-valued arguments from a source instance to create nodes in the
target instance, and to specify functional dependencies between some values. First,
using constraints defined within a schema, an algorithm produces the automapping
representing this schema. Next, (auto)mappings can be combined by means of some
operators delivering more general mappings between schemas provided that a cor-
respondence between schemas is given. While a mapping is executed, some missing
data can be inferred based on constraints encoded in the mapping specification.

1.1 Introduction

A schema mapping is a specification that describes how data structured under
a source schema is to be transformed into data structured under a target
schema [8]. Recently, this problem has received considerable attention in the
context of data exchange [3, 7], data integration [12, 18], schema evolution
[14], P2P databases [5, 19], life science databases [22] or e-commerce [6, 21],
where data comes from many different sources with different schemas.

In this paper we are continuing our work on automatic generation of map-
pings and transformations of XML data [17, 22, 6, 19, 20]. The proposed
method is based on constraints defined within XML schema: keys, key refer-
ences, and value dependencies. We show how these constraints can be formal-
ized and how they can be used to generate automappings. An automapping
? The work was supported in part by the Polish Ministry of Science and Higher

Education under Grant N516 015 31/1553.

2 Tadeusz Pankowski

maps a schema onto itself. Automappings can be next combined giving ar-
bitrary mappings between different schemas by means of Match, Compose,
and Merge operators over (auto)mappings [19]. In order to express unique
relationships between data we use Skolem functions in specification of map-
pings in XDMap. We also show how some missing or incomplete data, which
are not given explicitly in sources, can be deduced based on value dependency
constraints while a mapping is executed.

To define mappings we assume that key and some value constraints are
specified within schema (using XML Schema [27] notation). We show how
an automapping may be automatically generated from these constraints. It is
significant in our approach that the constraints are specified outside the map-
ping by means of constraint-oriented notation. The generated automapping
preserves these constraints. In contrast, in other mapping languages (e.g. in
[28]) constraints must be explicitly encoded in the mapping language. This
can make difficulties for future management when schemas evolve.

It is commonly accepted that the basic relationships between a source and
a target relational schemas can be expressed as a source-to-target dependen-
cies (STD) [2, 9, 14, 15]. In [3] STDs are adopted to XML data in such a
way that if a certain pattern occurs in the source, another pattern has to
occur in the target. In our approach, the main idea of using STDs consists in
specifying how nodes in a target instance depend on key paths, how these key
paths correspond to paths in sources, and how target values depend on other
values. So, our approach is more operational and uses DOM interpretation of
XML documents. To generate the instance of a target schema from instances
of source schemas, we use the idea of chasing [2, 28].

The paper is organized as follows. In the following section we discuss and
propose some definition formalizing notions which are used in the rest of the
paper. Next, the language XDMap [19] is discussed. The language is used to
specify XML schema mappings. We analyze its syntax and semantics. Then,
we propose an algorithm for generating automappings. Finally, we show how
missing data can be discovered while a mapping is executed. The last subsec-
tion concludes the paper.

1.2 Skolem functions, constraints, XML trees and XML
schemas

A Skolem function returns a uniquely defined values for its arguments. Each
of its invocation without arguments generates a new object. If it is invoked
more than once for the same arguments it creates a new object only by the
first invocation, by consecutive invocations it returns the identifier of the
object created by the first evaluation. A concept of using Skolem functions
for creation and manipulation object identifiers has been previously proposed
in ILOG [11] and in [1, 10]. Recently, Skolem functions have been also used
to schema mappings. For example, in Clio [23] they are used for generating

1 XML schema mappings using schema constraints and Skolem functions 3

missing target values if the target element cannot be null (e.g. components of
keys), in [28] are used in a query rewriting based on data mapping.

In XDMap we consider Skolem functions with text-valued arguments, and
they are used in two contexts:

1. To compute a string value for the given function name and its arguments.
If f is a Skolem function name and a1, ..., am are string values, then the
value of the Skolem term f(a1, ..., am) is the string ”f(a1, ..., am)”, called
a term value, obtained as the concatenation of the function name, its
arguments, parenthesis, and separating commas. Further on quotation
marks surrounding term values will be omitted.

2. To generate a node (a node identifier) in created resulting XML (data)
trees. In this context a Skolem term FP (a1, ..., am) will be used to express
one-to-one relationship between a tuple (a1, ..., am) of key paths values
from a source XML tree and the set of nodes labeled with P in a target
tree.

We view an XML data as an ordered node-labeled unranked tree (XML
tree). We assume that except for simple text values also Skolem term values
may be assigned to text (leaf) nodes.

Let Lab be a countably infinite set of labels (names), F be a countably
infinite set of Skolem function names, Str be a set of string values, Term be
a set of term values of the form f(a1, ..., am), where f ∈ F and ai ∈ Str , and
Did be a set of document identifiers (URI addresses or file names). Attributes
are modeled as elements.

Definition 1. Let L ⊂ Lab be a finite set of labels. An XML tree is a tuple

I = (r,Ne, N t, child,≤, λ, ν, δ), (1.1)

where:

1. r is a distinguished root node, Ne is a finite set of element nodes, and N t

is a finite set of text nodes;
2. child ⊆ {r} ∪Ne ×Ne ∪N t – an acyclic binary relation introducing tree

structure into (r,Ne, N t) such that:
• the root has only one child (this child is the outermost element), i.e.

(r, n) ∈ child ∧ (r, n′) ∈ child ⇒ n = n′ ∧ n ∈ Ne;
• each element node must have a child, i.e:

(n, n′) ∈ child ∧ n′ ∈ Ne ⇒ ∃n′′(n′′ ∈ (Ne ∪N t) ∧ (n′, n′′) ∈ child);
3. ≤ – a total ordering relation on the set of nodes;
4. λ : Ne → L – a function labeling element nodes, the label l = λ(n) is the

type of n;
5. ν : N t → Str ∪Term – a function labeling text nodes with their text values

(i.e. string or term values);
6. δ : {r} → Did – a function assigning the document identifier to the root.

4 Tadeusz Pankowski

In Fig. 1.1 there are three XML trees I1, I2 and I3. The meaning of labels
are: author (A), name (N) and university (U) of the author; paper (P) title
(T), year (Y) of publication and the conference (C) where the paper has been
presented. Elements labeled with R and K are used to join authors with their
papers. Root nodes are not shown explicitly but we assume that they precede
the outer most elements and are labeled with I1, I2, and I3, respectively.

S1

P

A

N U
a1 u1

A

N U
a2 u2

P

T
t2

A

N
a1

T
t1

I1:

S2

A

N
a1

R
i1

R
i2

A

N
a3

R
i3

P

K
i1

T
t1

Y
05

C
C1

P

K
i2

T
t2

Y
03

C
C2

P

K
i3

T
t3

Y
04

C
C1

I2:
Y
04

S3

A

N PU
a1 u1

A

N U
a2 u2

P

T
t1

Y
05

T
t1

Y
05

P

T
t2

Y
03

A

N U
a3 u(a3)

P

T
t3

I3:

Fig. 1.1. Sample XML trees

XML schema defines both a structure and constraints for XML data. We
will consider the following three kinds of constraints: keys, key references, and
value dependencies.

1. Key constraints. We use a formal approach to keys for XML proposed by
Buneman et al. [4]. A key constraint (or key) is an expression of the form

κ = (P, (P ′, (P1, ..., Pk))),

where P/P ′/Pi is a valid path for every i = 1, ..., k. The path P is called
the context path, P ′ is called the target path, and P1, ..., Pk are called
the key paths of κ. When P = ε, we call κ an absolute key (then ε de-
notes the root), otherwise κ is called a relative key. In general, a path
P over a set L of labels is an expression with the XPath syntax [26]:
P ::= ε | l | P/l, where ε is the empty path, /l abbreviates child::l and
selects the l element children of the context node. An XML tree I satisfies
a key κ, denoted by I |= κ, if any subtree denoted by P ′ in the context
determined by P is uniquely identified by the tuple (s1, ..., sk) of text val-
ues of the tuple (P1, ..., Pk) of key paths. For example: I1 |= (/S1/P, T),
I1 |= (/S1/P, (A, (N))) I1 |= (/S1/P/A, (U, (ε))), where the last expres-
sion indicates that the node of type U is identified only by itself.

2. A key reference or keyref is an expression of the form

ρ = κ ref κ′,

where κ = (P, (P ′, (P1, ..., Pk))) and κ′ = (P, (P ′′, (P ′1, ..., P
′
k))) are both

key expressions. The key reference κ ref κ′ defines a foreign key κ that
refers to a primary key κ′. An XML tree I satisfies ρ, denoted I |= ρ, if:

1 XML schema mappings using schema constraints and Skolem functions 5

• I |= κ′, i.e. κ′ is a key satisfied in I, and
• for each node n in the set determined by P and for any value (s1, ..., sk)

of the key paths (P1, ..., Pk) in a node n′ in the set reachable from n
via P ′, there is exactly one node n′′ in the set reachable from n via
P ′′ in which (P ′1, ..., P

′
k) has the value equal to (s1, ..., sk).

For example: I2 |= (ε, (/S2/A, (R))) ref (ε, (/S2/P, (K))).
3. A value dependency is an expression of the form

τ = P/l/P ′ = f(P1, ..., Pn),

that defines functional dependency between a text values denoted by
P/l/P ′ and a tuple of text values determined by the tuple (P/l/P1, ..., P/l/Pn)
of paths. An XML tree I satisfies a a value dependency τ , I |= τ , if:
• I |= (P, (l, (P1, ..., Pn)),
• a text value of the path P/l/P ′ functionally depends on the tuple of

values determined by (P/l/P1, ..., P/l/Pn).
We use a Skolem function name f ∈ F to distinguish two different de-
pendencies having the same set of determining paths. For example: I1 |=
/S1/P/A/U = u(N), I2 |= /S2/P/Y = y(T), I2 |= /S2/P/C = c(T),
I3 |= /S3/A/U = u(N), I3 |= /S3/A/P/Y = y(T).

Definition 2. An XML schema over (L,F) is a tuple

S = (top, Seq,Key, Keyref, V aldep), (1.2)

where:

• top is the distinguished label of the outermost element, top ∈ L,
• Seq is a function from L to regular expressions over L− {top} defined by

the grammar e ::= ε | l | e|e | ee | e? | e+ | e∗;
• Key assigns a key constraint (P, (l, (P1, ..., Pk))) to any label l ∈ L−{top};
• Keyref assigns key references, (P, (P ′/l, (P1, ..., Pk))) ref Key(l′), to some

labels in l ∈ L− {top}.
• V aldep assigns a set of value dependencies, P/l/P ′ = f(P1, ..., Pn), to

some labels in l ∈ L− {top}. ¤

In Fig. 1.2 there are three XML data schemas (schema trees) S1, S2, and
S3. Instances of these schemas are XML trees I1, I2 and I3 in Fig. 1.1, respec-
tively. These schema trees specify only structural part of an XML schema.

The full description of a schema corresponding to S1 from Fig. 1.2 written
in XML Schema is presented in Fig. 1.3.

Definition 3. An XML tree I = (r,Ne, N t, child,≤, λ, ν, δ) conforms to the
XML schema S = (top, Seq, Key, Keyref, V aldep), denoted by I |= S, if:

1. For the root node r, δ(r) is defined, and for any text node n ∈ N t, ν(n)
is defined.

2. If (r, n) ∈ child, then λ(n) = top.

6 Tadeusz Pankowski

S3

A*

N P+

T Y?

U?

S3:S1

P*

T A+

N U?

S1: S2

A*

N R*

P*

K Y? T C?

S2:

Fig. 1.2. Sample schemas describing structural part of instances from Fig. 1.1

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="S1">

<xs:complexType>
<xs:sequence>

<xs:element ref="P"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="P">

<xs:complexType>
<xs:sequence>

<xs:element name="T" type="xs:string"/>
<xs:element ref="A" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:key name="PKey">

<xs:selector xpath="."/>
<xs:field xpath="T"/>

</xs:key>
</xs:element>
<xs:element name="A">

<xs:complexType>
<xs:sequence>

<xs:element name="N" type="xs:string"/>
<xs:element name="U" type="xs:string" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:key name="AKey">

<xs:selector xpath="."/>
<xs:field xpath="N"/>

</xs:key>
<xs:valdep>

<xs:dependent xpath="U"/>
<xs:function name="u"/>
<xs:argument xpath="N"/>

</xs:valdep>
</xs:element>

</xs:schema>

Fig. 1.3. Schema of S1 in XML Schema extended with <xs:valdep> declaration

3. For any node n in I with children (n1, ..., nm) such that n1 < ... < nm,
if λ(n) = l, then the sequence λ(n1)...λ(nm) is a word of the language
defined by the regular expression Seq(l).

4. For any label l ∈ L
• if a key constraint Key(l) is defined for l, then: I |= Key(l),
• if a key reference Keyref(l) is defined for l, then: I |= Keyref(l),
• if a value dependency τ ∈ V aldep(l), then: I |= τ .

1 XML schema mappings using schema constraints and Skolem functions 7

1.3 XML schema mapping - basic ideas

In a general setting of relational data exchange [9, 8, 15], a schema mapping
is a triple M = (S,T, Σ), where S and T are, respectively, source and target
schemas, and Σ is a set of formulas of some logical formalism over (S,T).

The formulas in Σ are often specified using source-to-target tuple-generating
dependencies [2], or STDs, that express the relationship between S and T.
They have been used to formalize relational data exchange by Fagin et al
[8, 9]. They have also been investigated as GLAV assertions in data integra-
tion scenario [12]. A STD is a first-order formula of the form [2]

∀x(φS(x) ⇒ ∃yψT (x,y)), (1.3)

where φS(x) is a conjunction of atomic formulas over S, and ψT (x,y)) is a
conjunction of atomic formulas over T.

In data exchange the following problem is considered [3, 8]: given an in-
stance I over the source schema S, find an instance J over the target schema
T such that the pair 〈I, J〉 satisfy the STDs in Σ. Such an instance J is called
a solution for I under M.

In general, a mapping specification in XDMap conforms to the general
form of STDs and has the form [19]:

∀x(G(x) ∧ Φ(x) ⇒ ∃yC(x;y) ∧∆(x;y)),

where G(x) and Φ(x) are conjunctions of atomic formulas over a source, and
C(x;y) and ∆(x;y) are conjunctions of atomic formulas over a target. G(x)
defines source variables over source tree, Φ(x) restricts values of variables,
C(x;y) specifies constraints (value dependencies) over target tree, and ∆(x;y)
defines child-parent relationships between nodes and, if necessary, also text
values for text nodes in the target tree.

Definition 4. Let a source schema S = (S1, ...,Sn) be a sequence of source
XML schemas over (LSi ,FSi), respectively, and T be a target XML schema
over (LT,FT). A mapping MS,T in XDMap from S into T is defined as
follows:

MS,T ::= (G,Φ, C,∆)(x;y) := foreach G(x)
where Φ(x)
when C(x;y)
exists ∆(x;y)

where

1. G(x) is a list of variable definitions over source schemas in S, a definition
of a variable x is an expression of the form: x in P or x in x′/P ;

2. Φ(x) is a conjunction of restrictions of the form: x = x′ over x;
3. C(x;y) is a list of target value dependencies of the form: x = f(x) or

y = f(x), where x ∈ x, y ∈ y;

8 Tadeusz Pankowski

4. ∆(x;y) is a conjunction δ1 ∧ · · · ∧ δm of formulas of the form
FP/l(x′;y′) in FP (x′′;y′′)/l[with z], where
• FP/l(x′;y′) is a Skolem term, where P/l is a path in T;
• FP (x′′;y′′)/l is a target path expression, where l is a label in T;
• (x′;y′) ⊆ (x;y), (x′′;y′′) ⊆ (x′;y′), z ∈ (x′;y′).

A mapping from S1 into S3 is given in Fig. 1.4.

M13(xT , xN , xU ; yY) =
foreach (xT , xN , xU) in S1

where true
when xU = u(xN), yY = y(xT)
exists

F/S3() in F()()/S3
F/S3/A(xN) in F/S3()/A
F/S3/A/N (xN) in F/S3/A(xN)/N with xN

F/S3/A/U (xN , xU) in F/S3/A(xN)/U with xU

F/S3/A/P (xN , xT) in F/S3/A(xN)/P
F/S3/A/P/T (xN , xT) in F/S3/A/P (xN , xT)/T with xT

F/S3/A/P/Y (xN , xT , yY) in F/S3/A/P (xN , xT)/Y with yY

Fig. 1.4. Mapping M13 from S1 into S3

Note that the definition of text variables, foreach (xT , xN , xU) in S1,
abbreviates in fact the following definition:

foreach xS1 in /S1, xP in xS1/P, xT in xP /T,
xA in xP /A, xN in xA/N, xU in xA/U .

Some variables, for example xS1, xP , xA, are auxiliary variables local in
the foreach clause, while another, for example xT , xN , xU , are source text
variables global in the mapping. The variable yY is a target variable defined
in the when clause as a function of xT . The variable yY is defined only in
the when clause because instances of S1 do not provide data about year of
publication. However, we know that the year of publication of a paper depends
on the title of the paper. This is denoted by the value dependency constraint:
yY = y(xT).

Assuming that a schema denotes a set of all its instances, a mapping is an
n-ary function that maps a tuple of source instances to a target instance (we
will omit subscripts of M if they are clear from the context):

M : S1 × ...× Sm → T, (1.4)

where for any tuple (I1, ..., In) such that Ii |= Si, M(I1, ..., In) = J |= T.
We will pay a special attention to automappings which are identity map-

pings from a schema onto itself, i.e. a mapping M is the automapping over S
iff M : S → S, where for each I ∈ S, M(I) = I.

1 XML schema mappings using schema constraints and Skolem functions 9

1.4 Semantics of mapping rules

We propose a semantics for the XDMap in the operational way. We state
how, for a given set (Ω,≤) of bindings of variables in (x;y) into text values
of an XML tree, determined by the foreach/where/when clauses, a set
of mapping rules is executed and how the resulting target instance tree is
created. The result tree must be ordered, so the encoding of the tree’s nodes
is a challenging issue. To encode ordering of the XML tree’s node a variaty
of order encoding methods is possible [13, 16]. We will use the Dewey order
encoding, where each node n is assigned a vector Pos(n) that represents the
path from the document’s root to n. For example, if Pos(n) = 0.1.3.2 then n
is the second child of a node n′, where n′ is the third child of the outermost
element that is the first element of the document (0 represents the root). The
Dewey vector provides information about both the relative position of a node
within children of the node’s parent, and the absolute position of the node
within the document (document’s XML tree).

We will construct the Dewey vector using the fact that bindings ω ∈ Ω
are totally ordered. Then we assume the following position function:

• Pos(r) = 0, if r is the root,
• Pos(n) = Pos(n′).ω, where n′ is the parent of n and ω is a binding for

variables x;y in an expression FP (x;y) used to generate the node n. If
the set of variables is empty (that is the case for the outermost element)
we assume that ω equals 1.

Semantics for XDMap is defined as follows:

Definition 5. Let M = (G,Φ, C,∆)(x;y) be a mapping over a schema S and
I be an instance of S. A target instance J = M(I),

J = (r,Ne, N t, child,≤, λ, ν, δ), (1.5)

is obtained by means of the semantic functions E,M,R, and N in the following
way:

1. r = N(F@doc()), and δ(r) = @doc, Pos(r) = 0.
2. n = N(FP/l(x;y))(ω) = FP/l(ω(x); ω(y)), n ∈ Ne, λ(n) = l.
3. R(FP/l(x;y) in FP (x′;y′)/l [with x′′])(ω)=
R(N(FP/l(ω(x); ω(y)) in FP (ω(x′); ω(y′))/l [with ω((x′′)])
if n = N(FP/l(x;y)(ω), n′ = N(FP (x′;y′)(ω), v = ω(x′′),
then (n′, n) ∈ child, Pos(n) = Pos(n′).ω,

n′′ = newId() ∈ N t, (n, n′′) ∈ child, ν(n′′) = v, Pos(n′′) = Pos(n).1
4. n ≤ n′ ⇔ Pos(n) ≤ Pos(n′).
5. M(∆(x;y))(Ω) = {R(δ(x;y))(ω) | δ ∈ ∆, ω ∈ Ω}.
6. E(M(x;y))(I) = M(∆(x;y))(((G,Φ, C)(x;y))(I)) = M(∆(x;y))(Ω),

where Ω is a totally ordered set of bindings of variables (x;y) determined
by (G,Φ, C). ¤

10 Tadeusz Pankowski

According to the definition of semantics, a new XML tree is created as
follows:

1. The execution of F@doc() produces a new root node r. The node is as-
sociated with a provided name @doc that is a unique name (URI or file
name) of the newly created document. The root node r gets the ordering
number 0 and precedes the first node of the created tree.

2. Execution of FP/l(ω(x); ω(y)) produces a new element node of type l.
3. The expression R(n, n′/l, [v]) acts as follows: n is assumed to be a child of

type l of n′, the order position of n is set to Pos(n′).ω; if the third optional
argument v is given, then a new text node n′′ is created, n′′ becomes a
child of n, and v is assigned to n′′ as its text value, the order position of
n′′ is set to Pos(n).1;

4. The total ordering on nodes coincides with the total ordering on Dewey
vectors.

5. The execution from p. (3) is carried out for any mapping rule δ ∈ ∆ and
for any binding ω ∈ Ω.

6. Execution of M(I) proceeds in two phases. First, a set Ω of bindings is
determined, and then Ω is used in execution of the set ∆ of mapping rules
by the semantic function M.

1.5 Using constraints to generate automappings

Information provided by an XML schema S my be used to generate the au-
tomapping that transform instances of S onto themselves, Algorithm 1.

Algorithm 1 Automapping generation from a schema
Input : An XML schema S = (top, Seq, Key, Keyref, Dep) over (L,F).
Output : Automapping

M = (foreach G,where Φ,when C, exists ∆) over S.

1. G := {xtop in /top}; Φ := {true};
C := ∅; ∆ := {Ftop() in F(@doc)()/top};
xtop := (x/top)

2. foreach l ∈ L begin
case Key(l) of

(P, (l, (P1, ..., Pm))), m > 0 :
G := G ∪ {xP/l in xP /l, ..., xP/l/Pm

in xP/l/Pm}
xP/l := xP ◦ (xP/l/P1 , ..., xP/l/Pm

)
∆ := ∆ ∪ {FP/l(xP/l) in FP (xP)/l}

(P, (l, ε)) :
G := G ∪ {xP/l in xP /l)
xP/l := xP ◦ (xP/l)
∆ := ∆ ∪ {FP/l(xP/l) in FP (xP)/l with xP/l}

1 XML schema mappings using schema constraints and Skolem functions 11

endcase
if Keyref(l) = (P, (P ′/l, (P1, ..., Pk))) ref (P, (P ′′/l′, (P ′1, ..., P

′
k))) then

Φ := Φ ∪ {xP/P ′/l/P1 = xP/P ′′/l′/P ′1 , ..., xP/P ′/l/Pm
= xP/P ′′/l′/P ′m}

foreach P/l/P ′ = f(P1, ..., Pm) ∈ V aldep(l)
C := C ∪ {xP/l/P ′ = f(xP/l/P1 , ..., xP/l/Pm

)}
end

For example, Algorithm 1 generates the automapping M33 for the schema
S3 (Fig. 1.5).

M33(y) = foreach (yN , yU , yT , yY) in S3

where true
when yU = u(yN), yY = y(yT)
exists

F/S3() in F()()/S3
F/S3/A(yN) in F/S3()/A
F/S3/A/N (yN) in F/S3/A(yN)/N with yN

F/S3/A/U (yN , yU) in F/S3/A(yN)/U with yU

F/S3/A/P (yN , yT) in F/S3/A(yN)/P
F/S3/A/P/T (yN , yT) in F/S3/A/P (yN , yT)/T with yT

F/S3/A/P/Y (yN , yT , yY) in F/S3/A/P (yN , yT)/Y with yY

Fig. 1.5. Automapping M33 over S3

In (a fragment of) the definition of S2 (Fig. 1.6), the schema specifies the
key and keyref relationships between the K child element of the P element
(the primary key) and the R child element of the A element (the foreign key).
For this schema, Algorithm 1 generates the automapping M22 given in Fig.
1.7.

Mappings can be combined by means of some operators giving a result
that in turn is a mapping. We have defined three operations: Match, Com-
pose, and Merge in [19]. Some of these operations require specification of a
correspondence between paths of schemas under consideration. Establishing
the correspondence is a crucial task in definition of data mappings [24].

1.6 Using value constraints to infer missing data by
executing mappings

In Fig. 1.8 there is an executable mapping, that integrates, by means of the
Merge operator, instances of schemas S1 and S2 under the schema S3. Now,
we focus on the problem of discovering missing values in the process of map-
ping execution. The discovery is achieved using some inference rules over (par-
tial) bindings of variables.

12 Tadeusz Pankowski

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="S2">

...

</xs:element>

<xs:element name="A">

...

<xs:keyref name="RKeyref" refer="KKey">

<xs:selector xpath="."/>

<xs:field xpath="R"/>

</xs:keyref>

</xs:element>

<xs:element name="P">

...

<xs:key name="KKey">

<xs:selector xpath="."/>

<xs:field xpath="K"/>

</xs:key>

</xs:element>

</xs:schema>

Fig. 1.6. Schema of S2 expressed in XML Schema language

M22 = foreach (zN , zR, zK , zT , zY , zC in S2

where zR = zK

when zK = k(zN , zT), zY = y(zT), zC = c(zT)
exists
F/S2() in F()()/S2
F/S2/A(zN) in F/S2()/A
F/S2/A/N (zN) in F/S2/A(zN)/N with zN

F/S2/A/R(zN , zK) in F/S2/A(zN)/R with zK

F/S2/P (zK) in F/S2()/P
F/S2/P/K(zK) in F/S2/P (zK)/K with zK

F/S2/P/T (zK , zT) in F/S2/P (zK)/T with zT

F/S2/P/Y (zK , zY) in F/S2/P (zK)/Y with zY

F/S2/P/C(zK , zC) in F/S2/P (zK)/C with zC

Fig. 1.7. Automapping M22 over S2

Execution of MergeS3(S1,S2)(I1, I2) consists of the following four steps:

1. Determining a set Ω of bindings and a set Ω′
Ω of dependent bindings.

Variable specifications in the foreach clause over schemas S1 and S2 are
computed against instances I1 and I2, respectively, and produce two sets
Ω1 and Ω2 of partially defined bindings. By Ω we denote the union of
Ω1 and Ω2. By Ω′

Ω we denote a set of dependent bindings for dependent
variables (specified in the when clause). A binding ω′ω ∈ Ω′

Ω binds a term
value to a dependent variable, e.g. ω′ω(xU) = u(ω(xN)). The set Ω of all
bindings for all variables, and the set Ω′

Ω of dependent bindings for all

1 XML schema mappings using schema constraints and Skolem functions 13

MergeS3(S1,S2) =

foreach (xT , xN , xU) in S1, (zN , zR, zK , zT , zY) in S2

where zR = zK

when xU = u(xN), yY = y(xT), vU = u(zN), zY = y(zT)
exists

(1) F/S3() in F()()/S3
(2) F/S3/A(xN) in F/S3()/A

F/S3/A(zN) in F/S3()/A
(3) F/S3/A/N (xN) in F/S3/A(xN)/N with xN

F/S3/A/N (zN) in F/S3/A(zN)/N with zN

(4) F/S3/A/U (xN , xU) in F/S3/A(xN)/U with xU

F/S3/A/U (zN , vU) in F/S3/A(zN)/U with vU

(5) F/S3/A/P (xN , xT) in F/S3/A(xN)/P
F/S3/A/P (zN , zT) in F/S3/A(zN)/P

(6) F/S3/A/P/T (xN , xT) in F/S3/A/P (xN , xT)/T with xT

F/S3/A/P/T (zN , zT) in F/S3/A/P (zN , zT)/T with zT

(7) F/S3/A/P/Y (xN , xT , yY) in F/S3/A/P (xN , xT)/Y with yY

F/S3/A/P/Y (zN , zT , zY) in F/S3/A/P (zN , zT)/Y with zY

Fig. 1.8. A mapping specifying merging of S1 and S2 under S3

dependent variables, are shown in Fig. 1.9(1). Bindings in Ω are partial
functions because some bindings for some variables may be undefined –
we denote this by ⊥. For example, ω3(xU) = ⊥.

2. Expanding bindings from Ω.
If ω ∈ Ω and ω(x) = ⊥, i.e. ω is not defined for x, then we assume

ω(x) := ω′ω(x). (1.6)

In this way we assign a term value to a variable for which there is no
explicit binding. For example, ω3(xU) := ω′ω3

(xU) = u(ω3(xN)) = u(a1).
In Fig. 1.9(2) there is the result of expanding bindings from Ω.

3. Resolving term values in bindings.
In this step we try to discover text values for these variables to which
term values have been assigned. We say that such variables have missing
values. To achieve this the following inference rule is applied:

ω′ω1
(x1) = ω′ω2

(x2) ⇒ ω1(x1) := ω2(x2) (1.7)

For example, in this way we can obtain that ω1(yY) = 05. This is obtained
as follows: ω′ω1

(yY) = ω′ω4
(zY), so using the rule (1.7) we have ω1(yY) :=

ω4(zY) = 05. Note that ω6(vU) can not be resolved. The resolved set of
bindings is shown in Fig. 1.9(3).

After preparing an expanded and resolved set Ω of bindings, the exist
clause of the mapping can be executed. For the mapping in Fig. 1.8 the ex-
ecution proceeds as follows (we discuss only some representative mapping
expressions):

14 Tadeusz Pankowski

(1) Bindings Ω = Ω1 ∪Ω2:

Ω xT xN xU yY zN zR zK zT zY vU

ω1 t1 a1 u1 ⊥
ω2 t1 a2 u2 ⊥
ω3 t2 a1 ⊥ ⊥
ω4 a1 i1 i1 t1 05 ⊥
ω5 a1 i2 i2 t2 03 ⊥
ω6 a3 i3 i3 t3 04 ⊥

Dependent bindings Ω′
Ω :

Ω′
Ω xU yY vU zY

ω′ω1 u(a1) y(t1)
ω′ω2 u(a2) y(t1)
ω′ω3 u(a1) y(t2)
ω′ω4 u(a1) y(t1)
ω′ω5 u(a1) y(t2)
ω′ω6 u(a3) y(t3)

(2) Set Ω of bindings after expanding:

Ω xT xN xU yY zN zR zK zT zY vU

ω1 t1 a1 u1 y(t1)
ω2 t1 a2 u2 y(t1)
ω3 t2 a1 u(a1) y(t2)
ω4 a1 i1 i1 t1 05 u(a1)
ω5 a1 i2 i2 t2 03 u(a1)
ω6 a3 i3 i3 t3 04 u(a3)

(3) Set Ω of bindings after expanding and resolving:

Ω xT xN xU yY zN zK zT zY vU

ω1 t1 a1 u1 05
ω2 t1 a2 u2 05
ω3 t2 a1 u1 03
ω4 a1 i1 t1 05 u1
ω5 a1 i2 t2 03 u1
ω6 a3 i3 t3 04 u(a3)

Fig. 1.9. Determining, expanding and resolving a set Ω of bindings during execution
of the mapping MergeS3(S1,S2) on the pair of instances (I1, I2)

(1) Two new nodes are created, the root r and the node n of the outermost
element of type /S3, as results of Skolem functions F()() and F/S3(),
respectively. The node n is a child of type S3 of r.

(2) A new node n′ for any distinct value of xN is created. Each such node has
the type /S3/A and is a child of type A of the node n created by F/S3().

(3) For any distinct value of xN a new node n′′ of type /S3/A/N is created.
Each such node is a child of type N of the node created by invocation
of F/S3/A(xN) in (2) for the same value of xN . Because n′′ is a leaf, it
obtains the text value equal to the current value of xN .

(4) Analogously for the rest of the specification.

As the result, we obtain the instance I3 depicted in Fig. 1.1.

1 XML schema mappings using schema constraints and Skolem functions 15

1.7 Conclusion

In the paper the problem of schema mapping is considered, which occurs in
many data management systems such as XML data exchange, XML data inte-
gration or e-commerce applications. Our solution to this problem relies on the
automatic generation of semantics-preserving schema mappings. We discussed
how automappings could be generated using schema constraints, such as keys,
key references and value dependencies, defined in XML Schema. The map-
ping specification language XDMap is discussed. Mapping rules in XDMap
are defined in conformity with source-to-target data generating dependencies.
Skolem functions are used in these rules to express both functional dependen-
cies between some text values in the target instance, and between tuples of key
path values in the sources and subtrees in the target. Mappings between two
schemas can be generated automatically from their automappings and corre-
spondences between schemas. Automappings represent schemas, so operations
over schemas and mappings can be defined and performed in a uniform way.
We show how constraints on values can be used to infer some missing data.
Our techniques can be applied in various XML data exchange scenarios, and
are especially useful when the set of data sources change dynamically (e.g. in
P2P environment) [25, 5] or when merging data from heterogeneous sources
is needed [22]. The method proposed in the paper is under implementation
in a system for semantic integration of XML data in P2P environment using
schemas and ontologies [6, 19].

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web. From Relational to
Semistructured Data and XML, Morgan Kaufmann, San Francisco, 2000.

2. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases , Addison-Wesley,
Reading, Massachusetts, 1995.

3. Arenas, M., Libkin, L.: XML Data Exchange: Consistency and Query Answer-
ing, PODS Conference, 2005, 13–24.

4. Buneman, P., Davidson, S. B., Fan, W., Hara, C. S., Tan, W. C.: Reasoning
about keys for XML, Information Systems, 28(8), 2003, 1037–1063.

5. Calvanese, D., Giacomo, G. D., Lenzerini, M., Rosati, R.: Logical Foundations
of Peer-To-Peer Data Integration., Proc. of the 23rd ACM SIGMOD Symposium
on Principles of Database Systems (PODS 2004), 2004, 241–251.

6. Cybulka, J., Meissner, A., Pankowski, T.: Schema- and Ontology-Based XML
Data Exchange in Semantic E-Business Applications, Business Information
Systems, BIS 2006, Lecture Notes in Informatics, Vol.85 , 2006, 429–441.

7. Fagin, R., Kolaitis, P. G., Miller, R. J., Popa, L.: Data Exchange: Semantics
and Query Answering., ICDT 2003 , Lecture Notes in Computer Science 2572,
Springer, 2002, 207–224.

8. Fagin, R., Kolaitis, P. G., Popa, L.: Data exchange: getting to the core., ACM
Trans. Database Syst., 30(1), 2005, 174–210.

16 Tadeusz Pankowski

9. Fagin, R., Kolaitis, P. G., Popa, L., Tan, W. C.: Composing Schema Mappings:
Second-Order Dependencies to the Rescue., PODS , 2004, 83–94.

10. Fernandez, M. F., Florescu, D., Kang, J., Levy, A. Y., Suciu, D.: Catching the
Boat with Strudel: Experiences with a Web-Site Management System., SIG-
MOD Conference, 1998, 414–425.

11. Hull, R., Yoshikawa, M.: ILOG: Declarative Creation and Manipulation of Ob-
ject Identifiers., VLDB , 1990, 455–468.

12. Lenzerini, M.: Data Integration: A Theoretical Perspective., PODS , 2002, 233–
246.

13. Li, Q., Moon, B.: Indexing and Querying XML Data for Regular Path Expres-
sions, Proc. of the 27th International Conference on Very Large Data Bases,
VLDB 2001, Rome, Italy , 2001, 361–370.

14. Melnik, S., Bernstein, P. A., Halevy, A. Y., Rahm, E.: Supporting Executable
Mappings in Model Management., SIGMOD Conference, 2005, 167–178.

15. Nash, A., Bernstein, P. A., Melnik, S.: Composition of Mappings Given by
Embedded Dependencies., PODS , 2005, 172–183.

16. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-Friendly XML Node Label, Proc. of the 2004 ACM SIGMOD Interna-
tional Conference on Management of Data , 2004, 903–908.

17. Pankowski, T.: A High-Level Language for Specifying XML Data Transforma-
tions, Advances in Databases and Information Systems ADBIS 2004 , Lecture
Notes in Computer Science 3255, Springer, 2004, 159–172.

18. Pankowski, T.: Specifying Schema Mappings for Query Reformulation in Data
Integration Systems, Atlantic Web Intelligence Conference - AWIC’2005 , Lec-
ture Notes in Computer Science 3528, Springer, 2005, 361–365.

19. Pankowski, T.: Management of executable schema mappings for XML data ex-
change, Database Technologies for Handling XML Information on the Web,
EDBT 2006 Workshops , Lecture Notes in Computer Science 4254, Springer,
2006, 264–277.

20. Pankowski, T.: Reasoning About Data in XML Data Integration, Information
Processing and Management of Uncertainty in Knowledge-based Systems, IPMU
2006, Vol 3 , Editions EDK, Paris, 2006, 2506–2513.

21. Pankowski, T.: Integration of XML Data in Peer-To-Peer E-commerce Applica-
tions, 5th IFIP Conference I3E’2005 , Springer, New York, 2005, 481–496.

22. Pankowski, T., Hunt, E.: Data Merging in Life Science Data Integration Sys-
tems, Intelligent Information Systems, New Trends in Intelligent Information
Processing and Web Mining , Advances in Soft Computing, Springer Verlag,
2005, 279–288.

23. Popa, L., Velegrakis, Y., Miller, R. J., Hernández, M. A., Fagin, R.: Translating
Web Data., VLDB , 2002, 598–609.

24. Rahm, E., Bernstein, P. A.: A survey of approaches to automatic schema match-
ing, The VLDB Journal , 10(4), 2001, 334–350.

25. Tatarinov, I., Halevy, A. Y.: Efficient Query Reformulation in Peer-Data Man-
agement Systems., SIGMOD Conference, 2004, 539–550.

26. XML Path Language (XPath) 2.0, W3C Working Draft: 2002. www.w3.org/TR/
xpath20

27. XML Schema Part 1: Structures: 2004. www.w3.org/TR/xmlschema-1
28. Yu, C., Popa, L.: Constraint-Based XML Query Rewriting For Data Integra-

tion., SIGMOD Conference, 2004, 371–382.

