
XML data integration in SixP2P – a theoretical framework

Tadeusz Pankowski
Institute of Control and Information Engineering

Poznań University of Technology, Poland
Faculty of Mathematics and Computer Science
Adam Mickiewicz University, Poznań, Poland
tadeusz.pankowski@put.poznan.pl

ABSTRACT
In the paper we discuss the problem of data integration in a
P2P environment. In such setting each peer stores schema of
its local data, mappings between the schema and schemas of
some other peers (peer’s partners), and schema constraints.
The goal of the integration is to answer queries formulated
against arbitrarily chosen peers. The answer consists of data
stored in the queried peer as well as data of its direct and
indirect partners. We focus on defining and using mappings,
schema constraints, query propagation across the P2P sys-
tem, and query reformulation in such scenario. A special
attention is paid to discovering missing values using schema
constraints and to reconcile inconsistent data using reliabil-
ity levels assigning to the sources of data. The discussed
approach has been implemented in SixP2P system (Seman-
tic Integration of XML data in P2P environment).

1. INTRODUCTION
In peer-to-peer (P2P) data management systems, the au-

tonomous computing nodes (the peers) cooperate to share
resources and services. The peers are connected to some
other peers they know or discover. In such systems the user
issues queries against an arbitrarily chosen peer and expects
that the answer will include relevant data stored in all P2P
connected data sources. The data sources are related by
means of schema mappings, which are used to specify how
data structured under one schema (the source schema) can
be transformed into data structured under another schema
(the target schema) [8, 9]. A query must be propagated to
all peers in the system along semantic paths of mappings
and reformulated accordingly. The partial answers must
be merged and sent back to the user. While merging, we
face the problem of discovering missing data and reconciling
inconsistent data. In this paper we propose a theoretical
framework to deal with these issues. The approach was ver-
ified in implementation of SixP2P system.

Related work. In [13, 11], the peer-to-peer data man-
agement systems (PDMS) are defined as decentralized, eas-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAMAP’08, March 25th, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-697-8 ...$5.00.

ily extensible data management architectures in which any
user can contribute new data, schema information, or map-
pings between other peers’ schemas. They are a natural
step beyond data integration systems with a global schema,
where the single logical schema is replaced with an inter-
linked collection of semantic mappings between peers’ indi-
vidual schemas. The formal foundation of mapping speci-
fication for relational data was proposed in [8] as source-to
target dependencies [1] or GLAVs [12, 5]. An adaptation
of this concept to XML data integration was discussed in
[3], where tree-pattern formulas [21] were used instead of
relational ones. Yu and Popa [22] proposed a constraint-
based query rewriting for answering queries through a tar-
get schema, given a set of mappings between source schemas
and the target schema. In addition to the source-to-target
mappings they consider a set of target constraints specify-
ing additional properties on the target schema. This ap-
proach was used in the Clio system [10, 6]. Integrated data
needs to be ”repaired” every time we have a violation of
constraints imposed by the target schema [3, 18]. In [3] the
”easy” and ”hard” violations are distinguished: the former
are those when nodes do not have the right attributes, they
miss some – then we add them and give them distinguishable
null values. The ”hard” violations are those when sequences
of children do not satisfy the constraints imposed by regular
expressions in the target schema – then a special repairing
function ChangeReg that tries to repair these violations is
proposed. In [7] a problem of uncertain mappings is con-
sidered; for example, we could be uncertain whether the
attribute mailing-address is to be mapped to home-address,
permanent-address or office-address. Then each mapping
has a probability assigned to it and answers are ranked ac-
cordingly. In [7] two semantics for probabilistic relational
mappings are considered: by-table (probability of data de-
pends only on the table(s) where the data comes from) and
by-sequence (probability of data depends also on the context
created by the sequence of tables involved in the mapping).
Reconciliation of data in cooperative system using reliability
levels of data sources was discussed in [19].

Contributions. This paper describes formal founda-
tions and some algorithms used for XML data integration
in SixP2P system. Schemas of XML data are described
by means of a class of tree-pattern formulas, like in [3].
These formulas are used to define both schema mappings
and queries. In contrast to [3], except for schemas we use
tree pattern formulas also to specify constraints (functional
dependencies and keys) over schemas. In contrast to [22],
we do not use any special language for specifying mappings.

����
���

�����
�����

	��
��

	��
����	�

�
��������
�
��

���

	��
��

	��
��		�

�
��������
����

����
����

����� ��	�� 	��
���

	�� �
���������

�����
����
����

����� 	��
���

	�� �
���������

�����
	��
���
	��
���

	�� �	����
����� ��	��

�����

������� 	��
���
	��
��

	��
��		�

�	���
�����
�����

��	�
�
����

���

Figure 1: XML schema trees S1, S2, S3, and their instances I1, I2 and I3, located in peers P1, P2, and P3

In SixP2P all, schemas, mappings, queries and constraints
are specified in a uniform way as a class of tree-pattern for-
mulas. Thanks to this we are able to translate high-level
specifications into XQuery programs. We propose also spe-
cial procedures to reconciliation of inconsistent data based
on reliability levels of data sources (like in [19]). To do this
we developed a quite different model from this proposed in
[7]. The probabilistic mappings are taken into account if
the violation of data constraints (functional dependencies)
is detected.

To summarize, the main contributions of the paper are:

• Formal framework: A uniform formalism is used
to define structure, constraints, mappings and queries.
Some formal properties have been proven, in particu-
lar we shown the relationship between functional de-
pendencies defined over a schema and the strategy of
propagation of queries and merging answers (Propo-
sition 6.4). We developed a novel approach to recon-
ciling inconsistent data using probabilistic mappings
based on reliability levels of data sources.

• Translation algorithms: We developed and imple-
mented a number of algorithms reformulating queries
and translating formal specifications into XQuery pro-
grams (queries). The demanded XQuery programs
are generated automatically from high level specifica-
tions. Such programs are used for: data transforma-
tion, query evaluation, discovering missing data, re-
moving duplicates, grouping and nesting.

The paper is organized as follows. Section 2 introduces
a running example and discuss execution strategies in P2P
environment. We pay attention to the problem of discover-
ing missing values, which impacts on the propagation and
merging modes. Basic definitions of XML schemas and in-
stances are introduced in Section 3. Schema mappings and
schema constraints are discussed in Section 4 and Section 5,
respectively. In Section 6 we define queries and query re-
formulation. The method of reconciling inconsistent data is
illustrated in Section 7. Section 8 concludes the paper.

2. QUERY EXECUTION STRATEGIES
In Figure 1 there are three peers P1, P2, and P3 along with

XML schema trees, S1, S2, S3, and schema instances I1, I2,
and I3, respectively. Further on, we will assume that XML
attributes are represented by elements. We also assume that
no element in XML schema has recursive definition. Then
XML schemas can be represented by trees, which in turn

enables us to specify schemas in a form of tree-pattern for-
mulas.

In P2P data integration systems a query is formulated
against an arbitrary target schema (owned by a target peer).
In order to obtain a complete answer, the query is to be
propagated to all partners of the target peer, these peers
propagate it further to their partners, etc. In this way the
query can reach all sources, which can contribute to the
final answer. Partial answers are merged step-by-step and
successively sent towards the target peer. In such scenario
the following three issues are of special importance:

1. Query propagation – using the information provided
by the query and by available schemas, the peer has
to decide who to send (propagate) the query to, and
whether a coming propagation should be accepted in
order to avoid cycles and to increase the expected amount
of information included in the answer.

2. Query reformulation – a query received and accepted
by a peer Pi from a peer Pj has to be reformulated
in such a way that it can be evaluated over Pi and its
answer conforms to the schema of Pj .

3. Merging partial answers. A peer can decide whether
the received partial answers should be merged with
(the full merge) or without (the partial merge) the
whole peer’s local instance. This decision is made
based on the functional dependencies defined over the
local schema. In this process some missing data can
be discovered and some inconsistent data can be rec-
onciled.

We do not assume any centralized control of the propaga-
tion. Instead, we assume that a peer makes decision locally
based on its knowledge about its schema and schema con-
straints and about the query that should be executed and
propagated. It turns out that the chosen strategy and the
way of merging partial answers determine both the final an-
swer and the cost of the execution.

Let us consider some possible strategies of execution of
the following query q11 against P1:

Give all available information concerning ”John”.

The data in the answer should be structured according to
the schema S1. The query is specified as follows:

q11 := /pubs[pub[title = xtitle ∧ year = xyear

∧author[name = xname

∧university = xuniv]]] ∧ xname = ”John”

In q11 variables xtitle, xyear, xname, and xuniv are bound to
text values of an XML tree conforming to the source schema
(tree-pattern formula) defined by the first conjunct of the
query. The second conjunct, xname = ”John”, is the query
qualifier. The answer to the query should contain infor-
mation stored in all three sources shown in Figure 1 (I1 is
empty).

Thus, one of the following three strategies can be realized
(Figure 2):

��

��

��

��

��

��

��

��

��

��� ����	�

��
��
��

��
� ��
���
	

Figure 2: Three execution strategies of the query q11

Strategy (a). Query q11 is sent to P2 and P3, where it
is reformulated to, respectively, q21 (from P2 to P1) and
q31 (from P3 to P1). The answers q21(I2) and q31(I3) are
returned to P1. In P1 these partial answers are merged with
the local answer q11(I1) and a final answer Ansa is obtained.
This process can be written as follows:

Ansa = merge({Ansa
11, Ansa

21, Ansa
31}),

Ansa
11 = q11(I1) = {(xtitle : ⊥, xyear : ⊥, xname : ⊥,

xuniv : ⊥)},
Ansa

21 = q21(I2) = {(xtitle : XML, xname : John,
xuniv : NY)},

Ansa
31 = q31(I3) = {(xname : ⊥, xtitle : ⊥, xyear : ⊥)},

Ansa = {(xtitle : XML, xyear : ⊥, xname : John,
xuniv : NY)}.

Note that the instance I1 consists of one empty valuation
of variables, i.e.

I1 = {(xtitle : ⊥, xyear : ⊥, xname : ⊥, xuniv : ⊥)},
where the null value is denoted by ⊥. Then also the answer
q11(I1) consists of the empty valuation.

The instance I2 consists of two valuations:

I2 = {(xtitle : XML, xname : John, xuniv : NY),
(xtitle : XML, xname : Ann, xuniv : LA)},

and the first valuation satisfies the query.

Strategy (b). It differs from strategy (a) in that P2 after
receiving the query propagates it to P3 and waits for the
answer q32(I3). It is easily seen that the final result is equal
to Ansa:

Ansb = merge({Ansb
11, Ansb

21, Ansb
31}) =

= {(xtitle : XML, xyear : ⊥, xname : John,
xuniv : NY)},

Strategy (c). In contrast to the strategy (b), the peer P3

propagates the query to P2 and waits for the answer. Next,
the peer P3 decides to merge the obtained answer q23(I2)
with the whole its instance I3. The decision follows from
the fact that the functional dependency

/authors/author/paper/title →
/authors/author/paper/year

is defined over the local schema of P3, and it is the necessary
condition for discovering missing values (if there are any) of
variable xyear. So we have:

Ansc = merge({Ansc
11, Ansc

21, Ansc
31}),

Ansc
23 = {(xtitle : XML, xyear : ⊥, xname : John)},

Ansc
31 = q31(merge({I3, Ansc

23}))
= {(xtitle : XML, xyear : 2005, xname : John)}

Ansc = {(xtitle : XML, xyear : 2005, xname : John,
xuniv : NY)}.

While computing the merge merge({I3, Ansc
23} a missing

value of xyear is discovered. Thus, the answer Ansc provides
more information than those in strategies (a) and (b).

This example shows that it is useful to analyze relation-
ships between the query and functional dependencies defined
over the peer’s schema. The analysis can influence the deci-
sion about the propagation and merging modes (see Propo-
sition 6.4).

3. XML SCHEMAS AND INSTANCES
Schemas for XML data are usually specified by means of

XSDL (XML Schema Definition Language) or DTD (Doc-
ument Type Definition). In this paper an XML schema (a
schema for short) will be understood as a tree-pattern for-
mula [3, 17, 16, 21]. Schemas will be used to specify struc-
tures of XML trees. Some other properties of XML trees are
defined as schema constraints.

Definition 3.1. Let L be set of labels, top ∈ L be a
distinguished label (the outermost label in an XML schema
tree), and x be a vector of text variables. A schema over L
and x is an expression conforming to the syntax:

S ::= /top[E]
E ::= l = x | l[E] | E ∧ ... ∧ E,

where l ∈ L, and x ∈ x. In order to indicate the set and
ordering of variables in S we will write S(x).

Schemas in the above definition, are fragments of XPath
2.0 predicates [20] of the class XP {/,[],=,var}. These frag-
ments consist of label tests, child axes (/), branches ([]),
equality symbol (=), and variables.

Example 3.2. The schema of the data on the peer P1 is:

S1(x1, x2, x3, x4) := /pubs[pub[title = x1 ∧ year = x2∧
author[name = x3 ∧ university = x4]]].

Similarly, S2(x1, x2, x3) and S3(x1, x2, x3) for P2 and P3.

An XML tree I can be represented by a pair (S, Ω), where
Ω is a set of valuations of variables occurring in S. Such
representation of instances is not unique since elements in
instance trees can be grouped and nested in different ways.
Thus, Ω represents a class of instances of the same schema.
By a canonical instance we will understand the instance with
the maximal width, i.e. the instance where subtrees corre-
sponding to valuations are pair-wise disjoint. For example,
the instance I2 in Figure 1 is not canonical since two au-
thors are nested under one publication. In SixP2P we use
canonical instances to handle XML trees efficiently.

By the type of a variable we understand the path leading
from the root to the leafe which is bound to this variable

Definition 3.3. Let S be a schema over x and let an
atom l = x occur in S. Then the path p starting in the root
and ending in l is called the type of the variable x, denoted
typeS(x) = p.

The type of x1 in S2 is: typeS2(x1) = /pubs/pub/title.

4. SCHEMA MAPPINGS
The key issue in data integration is this of schema map-

ping. Schema mapping is a specification defining how data
structured under one schema (the source schema) is to be
transformed into data structured under another schema (the
target schema). A schema mapping specifies the semantic
relationship between a source schema and a target schema.

Definition 4.1. A mapping from a source schema S to
a target schema T is an expression of the form (a source-to-
target formula [8])

m := ∀x(S(x) ⇒ ∃yT (x′,y)), (1)

where x′ ⊆ x, and y ∩ x = ∅.

Variable names are used to indicate correspondences be-
tween text values of paths bound to variables. In practice,
a correspondence also involves a function that transforms
values of source and target variables. These functions are
irrelevant to our discussion, so they will be omitted.

In fact, a mapping is a special case of a query (see later
on), where the query qualifier is TRUE. The result of a
mapping is the canonical instance of the target schema. All
variables in y have null values (denoted by ⊥).

Example 4.2. m31 is a mapping from S3 to S1:

m31 := ∀x1, x2, x3(/authors[author[name = x1 ∧ paper[
title = x2 ∧ year = x3]]] ⇒ ∃x4/pubs[pub[title = x2

∧year = x3 ∧ author[name = x1 ∧ university = x4]]]).

In SixP2P mappings are implemented by means of XQuery
programs (queries). Algorithm 1 translates a mapping mik

into an appropriate XQuery program. By x, y, v (possibly
with subscripts) we denote SixP2P variables, while $x, $y, $v
are corresponding XQuery variables.

Algorithm 1 (translating a mapping to XQuery program)
Input: A mapping mik := ∀x(Si ⇒ ∃ySk), where

Si := /top′[E′], Sk := /top[E], y = (y1, ..., ym).
Output: Query in XQuery over Si transforming

an instance of Si into the corresponding
canonical instance of Sk.

mappingToXQuery(
∀x(/top′[E′] ⇒ ∃y1, ..., ym/top[E]))=

<top>{
let $y1 := ”null”, ..., $ym := ”null”
for $v in /top′,

τ(v, E′)
return

ρ(E)}
</top>

where v is a newly-invented SixP2P variable, and:

1. τ(v, l = x) = $x in if ($v[l]) then
string($v/l[1]) else ”null”,

2. τ(v, l[E]) = $v′ in if ($v[l]) then $v/l else /,
τ(v′, E),

3. τ(v, E1 ∧ · · · ∧ Ek) = τ(v, E1), · · · , τ(v, Ek),

4. ρ(l = x) = if defined($x) then <l>{$x}</l>
else <l>null</l>

5. ρ(l[E]) = <l>ρ(E)</l>

6. ρ(E1 ∧ · · · ∧ Ek) = ρ(E1) · · · ρ(Ek)

For the mapping m31 (Example 4.2), the XQuery program
generated by Algorithm 1 is:

<pubs>{ for $_v in /authors,
$_v1 in if ($_v[author]) then $_v/author else /,
$x_1 in if ($_v1[name]) then

string($_v1/name[1]) else "null",
$_v22 in if ($_v1[paper]) then

$_v1/paper else /,
$x_2 in if ($_v22[title]) then

string($_v22/title[1]) else "null",
$x_3 in if ($_v22[year]) then

string($_v22/year[1]) else "null"
return
<pub>

<title>{$x_2}</title>
<year>{$x_3}</year>
<author>

<name>{$x_1}</name>
<university>null</university>

</author>
</pub> }

</pubs>

Note that the program creates a canonical instance of S1,
i.e. elements are not grouped and all missing values are
replaced by nulls.

5. SCHEMA CONSTRAINTS
Among schema constraints we distinguish XML functional

dependencies (XFD), and keys. To define them we use
XPath path expressions of the form:

f ::= /P [C]/.../P [C],
P ::= l | P/l,
C ::= TRUE | P = x | C ∧ ... ∧ C,

where P is a path, l is a label, and x is a variable.
An XFD constrains the relationship between text values

of sets of paths, that in [2] has the form: {p1, ..., pk} → p,
and a tuple of values denoted by the left-hand side uniquely
determines a value of the right-hand side.

In SixP2P, an XFD of the above form is specified by means
of the expression:

f(x1, ..., xk) := /P1[C1]/.../Pn[Ck](x1, ..., xk),

where pi = type(xi), p = type(f) = /P1/.../Pn.

Example 5.1. XFD over S3 is
f(x2) := /authors/author/paper[title = x2]/year,
corresponding to
/authors/author/paper/title → /authors/author/paper/year.

Let f(x1, ..., xk) be an XFD over S(x), and x be a vari-
able in x such that type(x) = type(f). An XML tree I =
(S(x), Ω) satisfies this XFD, if for any two valuations ω, ω′ ∈
Ω, the implication holds:

ω(x1, ..., xk) = ω′(x1, ..., xk) ⇒ ω(x) = ω′(x),

i.e. f(x1, ..., xk) produces one-item sequence for any valu-
ation of its variables. It means, that XFD can be used to
infer missing values of the variable x in data trees which

are expected to satisfy this XFD [14]. Let ω and ω′ be two
valuations for variables in x and:

ω(x1, ..., xk) = ω′(x1, ..., xk),
ω(x) 6= ⊥, and ω′(x) = ⊥.

Then, we can take ω′(x) := ω(x).
The following algorithm generates an XQuery program for

a given schema S and a set F of XFD constraints over this
schema. The program discovers all possible missing values,
with respect to the set F .

Algorithm 2 (XFD to XQuery)
Input: A schema S = /top[E] and

a set of XFD constraints, getfd(x) returns XFD f
such that type(f) = type(x).

Output: Query in XQuery over S returning the
instance of S, where XFD constraints are used
to discover missing values.

xfdToXQuery(/top[E]).
2

The translation function xfdToXQuery(/top[E]) is iden-
tical to the translation function in Algorithm 1

mappingToXQuery(/top[E] ⇒ /top[E]),

except the rule (4) is replaced by the rule (4’):

4’. ρ(l = x) = <l>{if ($x = ”null”) then
string((getfd($x)[text()! = null])[1]) else $x}</l>.

Example 5.2. Discovering missing values in an instance
of S1 can be done using the XQuery program generated for
the schema S1 and XFD getfd(x2). The corresponding XQuery
program is similar to this of Algorithm 1, where expression
defining ”year” is:

<year>{
if ($x2="null") then string((/pubs/pub
[title=$x1]/year[text()!="null"])[1]) else $x2}

</year>

An XML key says that an subtree in an XML tree uniquely
depends on text values of a specified tuple of path [4]. A
key over a schema S(x) is an XPaths path expression of
the form: f(x1, ..., xk), where any variable xi is in x, and
type(f) is a path denoting a subtree. An instance I of
S(x) satisfies the key if a tuple of text values of the tu-
ple (type(x1), ..., type(xk)) of paths uniquely identifies the
subtree of the type type(f).

We assume that there is a key for any subtree defined by
a schema S. If the subtree is denoted by P , then its key is
denoted by key(p), or key(l), where l is the last label in P .

Example 5.3. For S1(x1, x2, x3, x4) we can define:
key(pub) = /pubs/pub[title = x1], or alternatively:

key′(pub) = /pubs/pub[title = x1 ∧ author/name = x3].

The following algorithm generates an XQuery program
transforming an XML tree into the tree satisfying all given
keys.

Algorithm 3 (keys to XQuery)
Input: A schema S := /top[E], and key(l), for each

label l occurring in S.
Output: Query in XQuery over S returning an instance

satisfying all given keys.

keysToXQuery(/top[E]) = <top>
{ τ(E, ∅) }

</top>,
where:

1. τ(l = x, Γ) :=
for $x in distinct-values(key(l).replace(Γ))
return

<l>{ $x}</l>

2. τ(l[E], Γ) :=
if (key(l) = κ/l[P1 = x1 ∧ ... ∧ Pk = xk]) then
foreach xi in (x1, ..., xk)
if (xi is not defined in Γ) then
begin

for $v in distinct-values(key(l).replace(Γ)/Pi)
return
Γ := Γ ∪ {xi 7→ $v}

end
<l>{ τ(E, Γ)}</l>

3. τ(E1 ∧ ... ∧ Ek, Γ) := (τ(E1, Γ), ..., τ(Ek, Γ)).

Γ is a set of replacements for variables. A replacement
is an expression of the form x 7→ y and says that any oc-
currence of a variable x is to be replaced by the variable y.
If κ is a key then κ.replace(Γ) produces an expression κ′,
where all variables are replaced according to Γ. If there is
no replacement for a variable xi in a conjunct Pi = xi in κ,
then this conjunct is not included into κ′.

For the schema S1(x1, x2, x3, x4) (Example 3.2) and the
set of keys defined in Example 5.3, Algorithm 4 generates
the following XQuery program:

<pubs>{
for $v_1 in distinct-values(/pubs/pub/title)
return
for $v_2 in distinct-values(/pubs/pub[title=$v_1]/author/name)
return
<pub>{
(for $x1 in distinct-values(/pubs/pub[title=$v_1 and

author/name=$v_2]/title)
return
<title>{ $x1 }</title>,
for $x2 in distinct-values(/pubs/pub[title=$v_1 and
author/name=$v_2]/year)

return
<year>{ $x2 }</year>,
<author>{
for $x3 in distinct-values(/pubs/pub[title=$v_1 and

author/name=$v_2]/author[name=$v_2]/name)
return
(<name>{ $x3 } </name>,
for $x4 in distinct-values(/pubs/pub[title=$v_1 and
author/name=$v_2]/author[name=$v_2]/university)

return
<university>{ $x4 } </university>)

}</author>)
}</pub>

}</pubs>

6. QUERIES AND QUERY REFORMULA-
TION

Given a schema S, a qualifier φ over S is a formula built
from constants and variables occurring in S. A query from
a source schema S to a target schema T is defined as a
mapping from S to T extended with a query qualifier φ (for
simplicity, we will omit the quantifications):

q := S ∧ φ ⇒ T .
An answer to a query is defined as follows:

Definition 6.1. Let I = (S(x), Ω) be a source instance.
An answer to a query q := S(x) ∧ φ ⇒ T (x′,y) is a target
instance I ′ = (T (x′,y), Ω′) such that:

Ω′ = {ω.restrict(x′) ∪ null(y) | ω ∈ Ω ∧ φ(ω) = true},
where ω.restrict(x′) is the restriction of the valuation ω to
the variables in x′, and null(y) is a valuation assigning nulls
to all variables in y.

Example 6.2. The following query

q21 := S2(x1, x2, x3) ∧ x2 = ”John”
⇒ S1(x1, x4, x2, x3)

filters an instance of the source schema S2 according to the
qualifier x2 = ”John”, extends the valuation ω(x1, x2, x3) to
ω′(x1,⊥, x2, x3), and produces an instance of S1.

In the reformulation process, we will be interested in the
left-hand side of the query, because it contains the qualifier
that is to be reformulated. The reformulation consists in an
appropriate renaming of variables.

Assume that a query qi = Si(xi)∧φi(zi) is issued against
a target peer Pi. If the query is propagated to a source peer
Pk then it must be reformulated into such a query qk that
can be evaluated over data stored on the peer Pk.

1. We want to determine the qualifier φk(zk) in a query

qk := Sk(xk) ∧ φk(zk)

over the source schema Sk(xk), zk ⊆ xk. To do this we
use the mapping from Sk(xk) to Si(xik,yik), xik ⊆ xk.

2. The qualifier φk(zk) is obtained as rewriting of the
qualifier φi(zi) according to Si(xi) and Si(xik,yik):

φk(zk) := φi(zi).rewrite(Si(xi), Si(xik,yik)).

The rewriting consists in appropriate replacement of
variable names. A variable z ∈ zi (z is also in xi) is
replaced by such a variable x ∈ xik that the type of
z in Si(xi) is equal to the type of x in Si(xik,yik).
If such replacement is impossible, then the qualifier
is non-rewritable. (In such the case the correspond-
ing conjunct might be replaced by TRUE giving an
approximate query).

Example 6.3. For the query qualifier

φ1(x3) := x3 = ”John”

over S1(x1, x2, x3, x4), we have the following reformulation
over S3(x1, x2, x3) with respect to the mapping m31:

φ1(x3).rewrite(S1(x1, x2, x3, x4), S1(x2, x3, x1, x4))
= φ3(x1) := x1 = ”John”,

since typeS1(x1,x2,x3,x4)(x3) = typeS1(x2,x3,x1,x4)(x1) =
/pubs/pub/author/name.

Answers to a query propagated across the P2P systems
must be collected and merged. In the merge operation we
try to discover missing values, i.e. null values ⊥ are re-
placed everywhere where it is possible, and this replacement
is based on XFD constraints.

Thus, it is important to decide which of two merging
modes should be selected in the peer while partial answers
are to be merged:

• partial merge – all partial answers are merged without
taking into account the source instance stored in the
peer,

• full merge – the whole source instance in the peer is
merged with all received partial answers; during this
operation XFDs are used to discover missing values; fi-
nally the query is evaluated on the result of the merge.

Criterion of the selection is the possibility of discovering
missing values during the process of merging. To make the
decision one has to analyze XFD constraints specified for
the peer’s schema and the query qualifier.

Proposition 6.4 states the sufficient condition when there
is no sense in applying full merge because no missing value
can be discovered.

Proposition 6.4. Let S(x) be a schema, q be a query
with qualifier φ(y), y ⊆ x, and IA be an answer to q received
from a propagation. Let f(z) be an XFD defined over S(x),
and type(f) = type(x) for some x ∈ x. Then no missing
value can be discovered by full merge, i.e.

q(merge(I, IA)) = merge(q(I), IA), (2)

if at least one of the following two conditions holds:

(a) x ∈ y, or

(b) z ⊆ y.

To illustrate application of the above proposition let us
consider a query about John’s data in peers P2 and P3 in
Figure 1. In P2 we have: query qualifier φ2 := x2 = ”John”,
and XFD /pubs/pub/author[name = x2]/university. In
force of Proposition 6.4 there is no chance to discover any
missing value of John’s university in any obtained answer
from anywhere.

Indeed, if we obtain an answer with university = ⊥, then
the real value is either in the local answer φ2(I2) or it does
not occur in I2 at all. So, the full merge is senseless.

In P3 we have: query qualifier φ3 := x1 = ”John”, and
XFD /authors/author/paper[title = x2]/year. Assump-
tions of proposition 6.4 are not satisfied, so there is a chance
to discover missing values of year using the full merge.

Indeed, from P2 we obtain the answer {(x1 : ”John”, x2 :
”XML”, x3 : ⊥)}. The local answer is empty. But perform-
ing the full merge and using φ3, we obtain:
φ3(merge({(x1 : ”John”, x2 : ”XML”, x3 : ⊥)},
{(x1 : ”Ann”, x2 : ”XML”, x3 : 2005)}) =
= {(x1 : ”John”, x2 : ”XML”, x3 : 2005)}.
Thus, the year of John’s publication has been discovered

(see Section 2, Strategy (c)).
The consequences of Proposition 6.4 impact also the way

of query propagations. The P2P propagation (i.e. to all
partners with the P2P propagation mode) may be rejected
because of avoiding cycles. However, when the analysis of
the query qualifier and XFD’s shows that there is a chance
to discover missing values, the peer can decide to propagate
the query with the local mode (i.e. it expects only the local
answer from a partner, without further propagations). Such
behavior can take place in peer P3 in the case discussed
above.

7. RECONCILING INCONSISTENT DATA
By inconsistent data we understand data which values vio-

late a functional dependency defined over the target schema.
If the violation is caused by null values we can try to replace
them by some non-null values, as was discussed in the pre-
vious sections. In the case of non-null values violating a
functional dependency, we calculate trustworthiness of data
and choose the most reliable [7, 19].

In many cases (e.g. in bioinformatics) some data sources
are known to be more credible than others (e.g. SWISS-
PROT is human-curated, making it more authoritative than
others) [19]. We assume that from a peer’s point of view a
numeric reliability level is assigned to every peer’s partner
and the following trust policy is followed:

1. A vector r1, ..., rn of reliability levels is assigned to
source peers. A value ri is treated as the trustwor-
thiness of the answer obtained from the source Si,
provided that answers from different sources are not
consistent. Then we apply a reconciliation procedure
aiming to choose this one that is the most reliable.

2. Reliability levels will be understood as probabilities
which will be assigned to mappings from the target to
source schemas. In this way arise probabilistic schema
mappings [7, 15].

A probabilistic schema mapping models the uncertainty about
which data is the correct one. Like [7] we assume that there
are two ways to interpret this uncertainty:

• a mapping is applied to all the data in S – this inter-
pretation will be referred to as the by-peer semantics;

• the applied mapping may depend on the particular
subtree identified by a given key in S – this interpre-
tation will be referred to as the by-subtree semantics.

To illustrate the approach let us consider Figure 3, and
the query ”Get all pairs (title, year) issued against S3”. As-
sume that reliability levels of sources S1, S2, and S3 are
0.5, 0.2, and 0.3, respectively. In Table 1 there are answers
returned from the three sources. If we interpret the an-
swers according to the by-peer semantics, then probabilities
of them are listed in Table 2. The probability of an answer
is the sum of the probabilities of the sources it comes from.
We see that probabilities of (XML, 2005) and (XML, 2004)
are the same.

In the by-subtree semantics we distinguish subtrees where
the answers come from [15]. In the source S3 we consider
subtrees identified by the key /authors/author[name = x1],
i.e. we force that a subtree of type /authors/author is
uniquely identified by the name of the author – in our case
by Ann and John. Now, probabilities are calculated taking
into account all possible combinations of answers coming
from all subtrees (Table 4). The probability in the row is
the product of probabilities of the mappings producing the
sequence of answers. In this semantics the highest probabil-
ity has the answer (XML, 2004) (Table 5) (it is the sum of
probabilities of all sequences in which occurs (XML, 2004)),
so it can be assumed as the correct answer and can be used
rather than (XML, 2005). Alternatively, all answers ranked
with their probabilities can be returned to the user [7].

The problem of probabilistic data integration we discuss
deeply in [15].

Table 1: Answers of Q analyzed in the by-peer se-
mantics
S1 (0.5) 〈(C#, 2006), (XML, 2005)〉
S2 (0.2) 〈(XML, 2004), (XML, 2004)〉
S3 (0.3) 〈(XML, 2004), (SQL, 2004), (C#, 2005)〉

Table 2: Probabilities of the by-peer answers of Q
Tuple Probability

(C#, 2006) 0.5
(XML, 2005) 0.5
(XML, 2004) 0.5
(SQL, 2004) 0.3
(C#, 2005) 0.3

Table 3: Answers of Q analyzed in the by-subtree se-
mantics
Key S1 (0.5) S2 (0.2) S3 (0.3)
Ann 〈(C#, 2006)〉 〈(XML, 2004)〉 〈(XML, 2004),

(SQL, 2004)〉
John 〈(XML, 2005)〉 〈(XML, 2004)〉 〈(C#, 2005)〉

Table 4: Probabilities of pairs of mappings in the
by-subtree semantics
Subtree with key ”Ann” Subtree with key ”John” Prob

〈(C#, 2006)〉 〈(XML, 2005)〉 0.25
〈(C#, 2006)〉 〈(XML, 2004)〉 0.10
〈(C#, 2006)〉 〈(C#, 2005)〉 0.15
〈(XML, 2004)〉 〈(XML, 2005)〉 0.10
〈(XML, 2004)〉 〈(XML, 2004)〉 0.04
〈(XML, 2004)〉 〈(C#, 2005)〉 0.06
〈(XML, 2004)〉,
〈(SQL, 2004)〉 〈(XML, 2005)〉 0.15
〈(XML, 2004),
(SQL, 2004)〉 〈(XML, 2004)〉 0.06
〈(XML, 2004)〉,
(SQL, 2004)〉 〈(C#, 2005)〉 0.09

Table 5: Probabilities of the by-subtree answers of Q
Tuple Probability

(C#, 2006) 0.5
(XML, 2005) 0.5
(XML, 2004) 0.6
(SQL, 2004) 0.3
(C#, 2005) 0.3

8. CONCLUSION
The paper presents a novel method for schema mapping

and query reformulation in XML data integration systems in
P2P environment. The discussed formal approach enables us
to specify schemas, schema constraints, schema mappings,
and queries in a uniform and precise way. Based on this
approach we define some basic operations used for query re-
formulation and data merging, and propose algorithms for
automatic generation of operational means (XQuery pro-
grams in our case) to perform these operations in real. We
discussed some issues concerning query propagation strate-
gies and merging modes, when missing data is to be discov-

�������
�������

��	
 ����

����
 �
���

�����

����
����

����
 �
��� ����
�

��	
 ����
������

�����
����

���
����

�����

����
�
��	

�����

����
�����
����

���

����
�
��	

��	
��

�
��
����
�

����

�����

�
��
����
�

���

�����
�����
����
�
�� ������

��	

�����

����
������

�����
����

����

����

������
��	

�����

���

������
��	

��	
��

�
��
������

����

�����

�
��
������

����

����
�����
����

����������

����
����

�����

�
��
����
�

��	

��	
��

����
����

����

�
��
������

������
��	

�����

����
����

�����

�
��
����
�

������

Figure 3: XML schema trees S1, S2, S3, and their instances I1, I2 and I3, located in peers P1, P2, and P3

ered in the P2P integration processes. We showed, how to
use schema constraints, mainly functional dependency con-
straints, to select the way of query propagation and data
merging, to increase the information content of the answer
to a query. A method for reconciliation of data violating
functional dependencies is proposed. The method is based
on reliability levels assigned to data sources and on calcu-
lating probabilities that answers are correct.

Acknowledgement: The work was supported in part by
the Polish Ministry of Science and Higher Education under
Grant N516 015 31/1553.

9. REFERENCES
[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of

Databases, Addison-Wesley, Reading, Massachusetts, 1995.
[2] Arenas, M.: Normalization theory for XML, SIGMOD

Record , 35(4), 2006, 57–64.
[3] Arenas, M., Libkin, L.: XML Data Exchange: Consistency

and Query Answering, PODS Conference, 2005, 13–24.
[4] Buneman, P., Davidson, S. B., Fan, W., Hara, C. S., Tan,

W. C.: Reasoning about keys for XML, Information
Systems, 28(8), 2003, 1037–1063.

[5] Calvanese, D., Giacomo, G. D., Lenzerini, M., Rosati, R.:
Logical Foundations of Peer-To-Peer Data Integration.,
Proc. of the 23rd ACM SIGMOD Symposium on Principles
of Database Systems (PODS 2004), 2004, 241–251.

[6] Chiticariu, L., Hernández, M. A., Kolaitis, P. G., Popa, L.:
Semi-Automatic Schema Integration in Clio, VLDB , 2007,
1326–1329.

[7] Dong, X. L., Halevy, A. Y., Yu, C.: Data Integration with
Uncertainty, VLDB , ACM, 2007, 687–698.

[8] Fagin, R., Kolaitis, P. G., Popa, L., Tan, W. C.:
Composing Schema Mappings: Second-Order Dependencies
to the Rescue, PODS , 2004, 83–94.

[9] Fuxman, A., Kolaitis, P. G., Miller, R. J., Tan, W. C.: Peer
data exchange, ACM Trans. Database Syst., 31(4), 2006,
1454–1498.

[10] Haas, L. M., Hernández, M. A., Ho, H., Popa, L., Roth, M.:
Clio grows up: from research prototype to industrial tool,
SIGMOD Conference, 2005, 805–810.

[11] Halevy, A. Y., Ives, Z. G., Suciu, D., Tatarinov, I.: Schema
mediation for large-scale semantic data sharing, VLDB J.,
14(1), 2005, 68–83.

[12] Lenzerini, M.: Data Integration: A Theoretical
Perspective., PODS (L. Popa, Ed.), ACM, 2002, 233–246.

[13] Madhavan, J., Halevy, A. Y.: Composing Mappings Among
Data Sources., VLDB , 2003, 572–583.

[14] Pankowski, T.: Management of executable schema
mappings for XML data exchange, Database Technologies
for Handling XML Information on the Web, EDBT 2006
Workshops, Lecture Notes in Computer Science 4254,
2006, 264–277.

[15] Pankowski, T.: Reconciling inconsistent data in
probabilistic XML data integration, British National
Conference on Databases (BNCOD) 2008 , Lecture Notes
in Computer Science 5071, 2008, 75–86.

[16] Pankowski, T., Cybulka, J., Meissner, A.: Reasoning About
XML Schema Mappings in the Presence of Key Constraints
and Value Dependencies, Web Reasoning and Rule Systems
(RR 2007), Lecture Notes in Computer Science 4524,
2007, 374–376.

[17] Pankowski, T., Cybulka, J., Meissner, A.: XML Schema
Mappings in the Presence of Key Constraints and Value
Dependencies, ICDT 2007 Workshop EROW’07 , CEUR
Workshop Proceedings Vol. 229, CEUR-WS.org,Vol.229,
2007, 1–15.

[18] Staworko, S., Chomicki, J.: Validity-Sensitive Querying of
XML Databases, Database Technologies for Handling XML
Information on the Web, EDBT 2006 Workshops, Lecture
Notes in Computer Science 4254, 2006, 164–177.

[19] Taylor, N. E., Ives, Z. G.: Reconciling while tolerating
disagreement in collaborative data sharing, SIGMOD
Conference, ACM, 2006, 13–24.

[20] XML Path Language (XPath) 2.0: 2006.
www.w3.org/TR/xpath20

[21] Xu, W., Özsoyoglu, Z. M.: Rewriting XPath Queries Using
Materialized Views, Int. Conference on Very Large Data
Bases, 2005 , 2005, 121–132.

[22] Yu, C., Popa, L.: Constraint-Based XML Query Rewriting
For Data Integration., SIGMOD Conference, 2004,
371–382.

