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Abstract—In this paper we discuss the problem of redun- database [9]. The process of normalization of an XML schema
dancies and data dependencies in XML data while an XML s similar: we have to choose an appropriate XML schema for
schema is to be normalized. Normalization is one of the main 5 given DTD and a set of data dependencies.

tasks in relational database design, where 3NF or BCNF, is to R | h lizati f XML d
be reached. However, neither of them is ideal: 3NF preserves ecently, research on normalization o ata was

dependencies but may not always eliminate redundancies, B reported in papers by Arenas and Libkin [10], [11], Kolahi
on the contrary—always eliminates redundancies but may not and Libkin [2], [12], [13], Yu and Jagadish [14].

preserve constraints. We discuss the possibility of achieg In this paper we discuss a method for normalizing a class of
both redundancy-free and dependency preserving form of XML XML schemas into an XML normal form that is redundancy-
schema. We show how the XML normal form can be obtained - . .
for a class of XML schemas and a class of XML functional free and preserves all XML functional dependencies. To this
dependencies. order we apply the theory proposed in [12] and [11]. The

novelty of the paper is the following:

We use a new language (preliminarily proposed in [15])
for expressing schemas in a form of tree-pattern formulas,
and for specifying XML functional dependencies.

I. INTRODUCTION

S XML becomes popular as the standard data model’
for storing and interchanging data on the Web and more

pompanies adopt XML as the_primary data mode[ for sto_ring « We show how the proposed formalism can be used for
information, XML schema design has become an increasingly normalizing XML schemas into normal form similar to

important issue. Central objectives of good schema design 14t of BCNFE with eliminating redundancies but preserv-
is to avoid data redundancies and to preserve dependencies ing all functional dependencies.

enforced by the application domain. Existence of redunglanc The struct f th is the followi In Section 2
can lead not only to a higher data storage cost but also to € structure ot the paper 1S the foflowing. In section

increased costs for data transfer and data manipulati@anit we intrqduce an runqing example and motivfate the researph.
also lead to update anomalies In Section 3 a relational form of the running example is

One strategy to avoid data redundancies is to desigﬂnsidered and some problems with its normalization are
redundancy-free schema. One can start from an intuitivaty ¢ Iscussed. Basic notations relevant to the discussed fissme
rect XML schema and a given set of functional dependencigke XM!‘ perspective, are introduced in Section 4. We defm_e
reflecting some rules existing in application domain. Tten t& Notation for defining tree-pattern formulas and for speci-
schema is normalized, i.e. restructured, in such a way kteat ing data dppendgnmes: XM.L funcUongI dependenglt_as and
newly obtained schema has no redundancy, preserves all S- Next, in Section 5, we discussed different normabrat

(is a lossless decomposition) and preserves all depemn&lternatlves—we show advantages and drawbacks of some

In general, obtaining all of these three objectives is nobgb schema_a ChOi_CeS‘ Finally, _in Section 6, an XML normal for_m
possible, as was shown for relational schemas [1]. Howiwer,(XNF) is defined (according to [11]) and we show how this

the case of XML schema, especially thanks to its hierard:higﬁrm can be reached for our running e_xample.. Wwe d|§cuss
structure, this goal can be more often achieved [2]. the problem from theoretical and practical points of view.

The normalization process for relational schemas was pi%@ctlon 7 concludes the paper.
posed in the early 70s by Codd [3], [4]. Then a number
of different normal forms was proposed, where the most
important of them such as 2NF, 3NF [3], BCNF [4], and In XML data, like in relational ones, redundancies are
ANF [5] are discussed today in every database textbook [thused by bad design of schemas. There are two kinds of
[6], [7]. These normal forms together with normalizatiomesign problems [11]: first of them is caused by non-key
algorithms, aim to deal with the design of relational dat&bafunctional dependencies and is typical for relational sthe
taking into account different types of data dependencigs [8lesign, while the other is more closely related to the hierar
[7]. The result of the normalization should be a well-desigin chical structure of XML documents.

II. MOTIVATION—REDUNDANCIES IN XML D ATA
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As we mentioned above, in the case of XML schemas sonuentifier s/d, price price, delivery time delivTime, and
redundancy problems may also occur because of bad dedigtivery placedelivPlace.

of hierarchical structure of XML document.

We assume that the following constraints must be satisfied
by any instance of this schema:

S db o all of fer children of the sameupplier must have the
‘art* same values of/d; this is similar to relational functional
- dependencies, but now we refer to both the values (text
pld suﬁpl'er* value of sId), and to structure (children of the same
offer+ supplier).

N
old sld price delivTime delivPlace

o delivPlace functionally depends on parp{d) and sup-
plier (sId), i.e. when a supplier has two different offers
for the same part (possibly with differemlelivTime

Fig. 1. Sample XML schema tree and/or price) the delivPlace is the same - see offers
ol ando2 in Fig. 3.
e delivPlace functionally determines suppliersid). It

db — partx means that having a delivery placdelivPlace) we
part — pld suppliersx know exactly which supplier is associated to this place;
pld — € although one supplier can own many delivery places.
supplier —  offer+ For example, in Fig. 3d1 is delivery place uniquely
offer — oId sId price delivTime delivPlace associated to the suppliat.
old - € It is easy to show that schema in Fig. 1 leads to redundancy:
sld - ¢ sid (an also all other data describing suppliers such as e.g.:
price - € name and address) amad/ivPlace are stored multiple times
delivTime — € for a supplier.
delivPlace — ¢

Fig. 2. A DTD describing the XML schema in Fig. 1. The symbalenotes
the empty string.

Further on we will show that a special caution should be
paid to such kind of dependencies as these in which partici-
patesdelivPlace. In this case we have to do with “cyclic”
dependencies, i.edelivPlace depends onpld and sld
(pId,sId — delivPlace) and sId depends onielivPlace
(delivPlace — sld).

db . o e .
L: First, we will discuss difficulties caused by such “cyclic”
/Paft /Part dependencies in relational databases, and next, we wi sho
old \ pid how this problem can be solved in the case of XML data.
pl p2
_ ) ) [1l. DEALING WITH REDUNDANCIES AND DEPENDENCIES
supplier supplier supplier IN RELATIONAL DATABASES
‘ \ ‘ \ A. Relational schemas and functional dependencies
offer offer  offer offer . ) )
\ ‘ ‘ \ In relational data model, a relational schema is understood
old: o1l 02 03 04 as a pair
sld: sl sl s2 sl R=(U,F),
price:  x1 X2 x3 x4 whereU is a finite set ofttributes andF is a set ofunctional
delivTime:  t1 t2 t3 t4 dependenciesver F. A functional dependence (FD) as an
delivPlace  d1 d1 d2 d1 expression of the form

Fig. 3. Sample instance of schema

X —Y,

)

whereX,Y C U are subsets df/. If Y C X, thenX — Y is

Example 2.1:Let us consider the XML schema tree imatrivial FD. By F'* we denote all dependencies which can be
Fig. 1 that describes a fragment of a database for storiimderred fromF by means of Armstrong’s axioms [16], [7].
data about parts and suppliers offering these parts. Its DTDA relation of type U is a finite set of tuples of typ&. Let
specification is given in Fig. 2, and an instance of this scherty = { A, ..., 4,,} anddom(A) be thedomainof attributeA €
is depicted in Fig. 3. U. Then a tupldA; : a1, ..., A, : a,], wherea; € dom(4;),

Eachpart element has identifigsld. For each part may be is a tuple of typel.
zero or more suppliers offering this part. Offers are stared A relation R conforms to schem&k = (U, F) (is an
of fer elements. Each offer has: offer identifiefd, supplier instance of this schema) i is of typeU, and all dependencies
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from F* are satisfied byk. An FD X — Y is satisfied by preserving normal forms. The research adopts a recently
R, denotedR = X — Y, if for all tuplesry,r2 € R holds proposed information-theoretic framework for reasonibgue

database designs [10].
mx(r1) =wx(re) = 7wy (r1) = my (r2), gns [10]

wherenx (r) is the restriction (projectior) of tuple » on the C. Relational analysis of XML schema

set X of attributes. Let us consider the relational representation of datastrec
A keyin R = (U, F) is such a minimal sek of attributes presented in Fig. 1. Then we have the following relational
that K — U is in F*. Then eachd € K is aprime attribute. schema:

R= (U,F), where

Th . ki lational sch lization i U= {old,sld,pld,price,delivTime,delivPlace},
e main task In relational schema normalization IS pro- F= {OId N SId,pId,price,delivTime,delivPlace,

ducing such a set of schemas that posses the required form, .
T o sld,pld — delivPlace,
usually 3NF or BCNF. The normalization process consists in ;

" : . delivPlace — sId}.
decomposition of a given input schema. The other approach
consists in synthesizing 3NF from functional dependeri@les  In R there is only ondey. The key consists of one attribute

Ideally, a decomposition of a schema should be losslesdd since all attributes inU functionally depends omId.
i.e. should preserve data and dependenciesRLet (U, F), Thus, R is in 2NF andold is the only prime (key) attribute
Uy,Uy CU, andU; U Uy = U, then schema®, = (U;, Fy) in R. Additionally, we assume that a given supplier delivers
and R, = (U, Fy) are a lossless decomposition & = a given part exactly to one placef{, sId — delivPlace).
(U, F), iff: Moreover, delivery placéelivPlace is connected with only
. The decomposition preserves data, i.e. for each instarf®i#€ supplier delivPlace — sId). .
R of R the natural join of projections oR on U; and R is not in 3NF because for the functional dependency
U, produces the relation equal 1, i.e. sld,pld — delivPlace:
e sld,pld is not a superkey, and
e delivPlace is not a prime attribute /.
« The decomposition preserves dependencies, i.e. Similarly for delivPlace — sId.
Ft = (U Ryt The lack of 3NF is the source of redundancies and update
T ALE Sl anomalies. Indeed, for example, the valuelefivPlace will
whereF; ={X - Y | X =Y € FAXUY C U}, berepeated as many times as many different tuples with the
and similarly for F5. same value of the pairs(d,pld) exist in the instance of
The decompositiofi(Uy, F,), (Us, Fy)) of (U, F) preserves - TO elllmlnate this drawback, we can decqmpd%elnto
data, ifU; N U, — Uy € F* (or, symmetricallyl;, N Uy — WO relatlo_n_al schemasy; and R., which are in 3NF. The
U, € F*) [9], [7]. Then we say that thelecomposition is decomposition must be based on the dependsendypld —
determinedy the functional dependentgnl, — U, € F+. delivPlace which guarantees that the decomposition preserves
A schemaR = (U, F) is in 3NF if for every FDX — A ¢ data. As a result, we obtain:

B. Normalization of relational schemas

R = 1y, (R) s 1y, (R).

F* holds: Ri1i= (U, F1), where

o X is a superkey, i.e. a key is a part &f, or Uy = {old,sld,pld,price,delivTime},

o Ais prime. Fy = {old — slId,pld, price, delivTime}.
The second condition says that only prime attributes may be
functionally dependent on a set of attributes which is not a Ro = (Uz, F), where
key. A schema is in BCNF if only the first condition of the Us = {sld,pld,delivPlace},
two above is allowed. It means, that if whenever a Zet Fy = {sld,pld — delivPlace,
determines functionally an attributé, then X is a superkey, delivPlace — sld}.

I.€. determmes the who!e S_ét i The discussed decomposition is both data and dependencies
The aim of a normalization process is to develop norm Peserving since:

forms by analyzing functional dependencies and successive

decomposition of the input relational schema into its pro- R(U) = my, (R) > 7y, (R),

jections. This way a well-designed schema can be obtained, .

where unnecessary redundancies and update anomalies fRR§VerY instanceR of schemaR, and

been eliminated. In practice, 3NF is accepted as the most F=(FUR)".

desirable form of relational schemas It does not eliminate

all redundancies but guaranties dependency preserv&dion. However, we see thas is not in BCNF, sincelelivPlace
contrast, BCNF eliminates all redundancies but does nietnot a superkey irR.

preserve all dependencies. In [13] it was shown that 3NFThe lack of BCNF inR, is the reason of redundancies. For
has the least amount of redundancy among all dependeegample, in tableR, we have as many duplicates afd as
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R i can obtain a form of XML schema that is equivalent to BCNF,
sld | pld | delivPlace i.e. eliminates all redundancies, and additionally preseall
sl | pl di XML functional dependencies.
sl | p2 dl
sl | p3 d2 IV. XML SCHEMAS AND INSTANCES
s2 | pl d3 Schemas for XML data are usually specified by DTD or

XSD [17]. In this section we will define XML schema by
means ofree-pattern formulagTPF) [18], [15]. Furthermore,
many tuples with the same value @élivPlace exist in this we do not consider attributes in XML trees since they can
table. always be represented by elements. Schemas will be used
We can further decomposg, into BCNF schemask,; to specify structures oKML trees Some other properties of
and Rqq, taking delivPlace — sId as the base for the XML trees are defined aschema constraints
decomposition. Then we obtain: Definition 4.1: Let L be a set ofabels andx be a vector
Ry — of variables. A schema TPF ovdr and x is an expression
21 = (U21,F21), where

Usi = {delivPlace, sid), conforming to the syntax:
Fyy = {delivPlace — sId}. S == JI[E]
E = l=z|IlE]|EAN...NE,
wherel € L, andz € x. In order to indicate the set and
ordering of variables it we will write S(x).

Raz = (Uaz, Fa2), where
Use = {pld,delivPlace},

Fopy = 0. O
After applying this decomposition té&, we obtain tables Example 4.1:For the schema tree from Fig. 1, the schema
Ro; and Ras: TPF has the following form:
Ry Ros S1 = /dblpart[pld = x1 A supplier|of fer|
sId | delivPlace | | pId | delivPlace ZZC;,:T‘T,Q A sid z/\xz/;prjzce = x4/\]m
s1 d1i pl di eLtvlL 1me = Iy eLtvlLrme = Ig .
sl d2 p2 di O
s2 d3 p3 d2 We see that a schema TPF has the following properties:
pl d3 « reflects the tree structure of XML data,
« binds variables to paths in the schema tree,
This decomposition is information preserving, i.e. « is a well-formed XPath predicate according to [19].

B — Rt bq R Definition 4.2: Let S be a schema TPF over and let an
2T A atom! = z occur in S. Then the pathp starting in the root
but does not preserve functional dependencies, i.e. and ending inl is called the type of the variable, denoted
types(x) = p.
Fy # (Fy1 U Fao)t = By 0

We can observe some negative consequences of the loss die type ofzy in Sy is: types, (z1) = /db/part/pld.
functional dependencies in the result decomposition. An XML database consists of a set of XML data. We define

Assume that we insert the tupl@l,d2) into Rss. The XML data as an unordered rooted node-labeled tree (XML

tuple will be inserted because it does not violate any colf€€) over a sef of labels, and a seftr U {1} of strings
strain imposed orR.». However, taking into account table@nd the distinguished null value (both strings and the null
Ro1 we see that suppliesl (determined byd2 in force Value, L, are used as values of text nodes).
of delivPlace — sId) offers partpl in the placed1. ~ Definition 4.3:An XML tee [ is a tuple
Thus, the considered insertion violates functional depanyg (7> NV, N, child, A, v), where:
sId,pId — delivPlace defined inRs. « ris adistinguishedbot node N¢ is a finite set oklement
The considered example shows that in the case of relational nodes and N* is a finite set oftext nodes
databases we are not able to completely eliminate redundane child C ({r} UN®) x (N®UN") — a relation introducing
cies and also preserve all functional dependencies. I touh tree structure into the sétr} U N°U N, wherer is the
([13]) that the best form for relation schema is 3NF, althoug ~ root, each element node has at least one child (which is
some redundancies in tables having this form can still reamai  an element or text node), text nodes are leaves;
In next section we will show that the hierarchical structure « A : N — L — a function labeling element nodes with
of XML documents can be used to overcome some of the hames (labels);
limitations of relational normal forms [11]. As it was shown « v : N* — Str U {L} — a function labeling text nodes
in [12], there are decompositions of XML schemas that are With text valuesfrom Str or with the null valuel.
both information and dependency preserving. In particuar O
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It will be useful to perceive an XML tred with schema  Definition 5.1: An XML functional dependency (XFD)
S over tuple of variablesx, as a pair(S,2) (called a over a setl of labelsand a sek of variables is an expression
description), where S is the schema TPF, an@ is a set with the syntax:

of valuations of variables inx. A valuationw € Q is a

d == /P|C]/...]P|C
function assigning values frorfitr U { L} to variables inx, fP _ l/| ED/]Z/ /FIC) (1)
ie.w : x— Stru{Ll}. C := TRUE|P=z|CA..ANC,

Example 4.2:The instancel; in Figure 3 can be repre-
sented by the following description:
I := (S1(x1, 29, 23, T4, x5, x6), { (p1, 01, s1,21,¢1,d1),
(pl,02,s1,22,t2,d1), (pl, 03, s2, 23,13, d2),
(p2,04,s1,24,t4,d1)}).

An XML tree T satisfies a descriptioriS,2), denoted
I = (S,Q), if I satisfies(S,w) for everyw € Q, where
this satisfaction is defined as follows:

Definition 4.4: Let S be a schema TPF ovet, andw be
a valuation for variables ix. An XML tree I satisfiesS by
valuationw, denoted! = (S, w), if the rootr of I satisfiesS
by valuationw, denoted(I, r) = (S,w), where:

1) (I,r) E (/I[E],w), iff 3n € N¢ child(r,n) A (I,n) =

(IE],w);
2) (I,n) E ([E1 A ... N Egl,w), iff A(n) [ and
Ing, ...,ng € N¢(child(n,n;) A (I,n;) = (E;,w)) for

1< <Ek;
3) (I,n) E (I = z,w), Iff A\(n) = 1 and In’ €
Nt(child(n,n') Av(n') = w(x)).
(I

A description(S, Q) represents a class 6f instances with

the same set of values (the safde since elements in instance fal)

trees can be grouped and nested in different ways.

For example, the XML tree in Fig. 4 satisfies two descrip-f5($1, 2)

tions (S1,4), and(Sz, Q2) where:

S1: /A[BZIL'l/\C:$2],

0= {(b,Cl),(b,CQ)},

Sy = /A[Bz:cl/\szg/\Dzacg],
Qo= {(b,el,dl), (b, e2,d1)}.

N

A
PN
B C C D D
b c2 d2

cl d1i

Fig. 4. A simple XML tree

V. XML FUNCTIONAL DEPENDENCIES AND KEYS

Over a schema TPF we can define some constraints, whigj(z1, z2)
specify functional dependencies between values and/cesnod
in instances of the schema. These constraints are called XMg;(x)

functional dependencies (XFD).

wherel € L, andzx is a variable inx. If variable names are
significant, we will write fd(x).

O

An XFD is an XPath expression that for a given valuation
w of its variables returns a sequence of objects (nodes or
text values). An XML treel (S,9) satisfies an XFD
f(x1,...,xy) if for each valuationw € Q of its variables,
f(x1,...,xy) returns a singleton.

Definition 5.2: Let I be an instance of schema TB¥x)
and f be an XFD defined ovef. The instancd satisfiesf,
denoted! = f, if for every valuationw of variables inx, the
implication holds

I E (S,w) = count([f(w)]) <1,

where[f(w)] is the result off computed by the valuation.

([

In the following example we discuss some XFDs oger
Example 5.1:Over S; the following XFDs can be defined:

fi(z) = /db/part[supplier/of fer/old = ],
fa(x) = /db/part[supplier/of fer/old = x]/pld,
fa(x1,x2) /db/part[pld = x1]/supplier/of fer|

sId = xo)/delivPlace,
/db/part/supplier/of fer|
delivPlace = x]/sId,
/db/part[pld = x1]/supplier|
of fer/sld = x3).

According to XPath semantics [19] the expressfofr)(w)
is evaluated against the instanteas follows: (1) first, a set
of nodes of type/db/part is chosen; (2) next, for each chosen
node the predicat&supplier/of fer/old = x] is tested, this
predicate is true in a node, if there exists a path of type
supplier/of fer/oldin I leading fromn to a text node with
the valuew(z). We see thatount([[f1(z)(w)]) equals 1 for
all four valuations satisfied by, i.e. forw; = [z — o],
1< <4,

Similarly, execution off(z)(w) returns a text value of the
path /db/part/pId, where from the set of nodes determined
by /db/part are taken only nodes satisfying the predicate
[supplier/of fer/old = w(x)]. We see that also this XFD
is satisfied byl .

However, none of the following XFDs is satisfied Ii:

g1(x) = /db/part[supplier/of fer/sId = x],
g2(x) = /db/part[pld = x]/supplier/of fer/sld
g3(x) = /db/part|pld = x]/supplier/of fer

( = /db/partlpld = x1]/supplier/of fer|

sld = x9],
/db/part/pld/supplier/of fer|

delivPlace = x].
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S db Sy db
‘rt |
part suppliers
1 o
pld suppliers sld part=
| T

sId offer+  delivPlace
~
old price delivTime

Fig. 5. Restructured form of schema in Fig. 1

pld offer+  delivPlace
~
old price delivTime

Fig. 7. Restructured form of schema in Fig. 1

I: /db\ L db\
part part |'/ l
_— — supplier /sup ier
pld T pld | qd— T sid
pl supplier supplier p2 7pplier sl part part s2 part
sld delivPlace  sId | delivPlace  sld delivPlace pId/ delivPlace  pld Q,pbce pld delivPlace
sl di s2 d2 sl d1 pl d1 p2 d1 pl d2
offer  offer offer offer offer  offer offer offer
| | | | | |
old: ol 02 03 04 old: ol 0‘2 0‘4 03
price: x1 x2 x3 x4 price: x1 X2 x4 x3
delivTime: t1 t2 13 14 delivTime: t1 t2 t4 3

Fig. 6. Instance of schema in Fig. 5

Evaluating the above XFDs againkt, we obtain:

Fig. 8. Instance of schema in Fig. 7

VI. NORMAL FORM FORXML

To eliminate redundancies in XML documents, some normal

count([g1(z)([z = s1D]) = 2 forms for XML schemas have been proposed [21], [11], [2],
count([ga(x)([x — p1])]) i 2, [12]. We will define XNF (XML Normal Form) using tree-
couni([[%(x)([x = pi])]) 1 1 B ‘;” pattern formulas and functional dependencies defined in the
ZZZZtE%zzggiﬁ?i[?lﬁ)p @2 = s1)]) _ 3 previous section and adapting the approach proposed in [21]

Definition 6.1: Let S be a schema TPF an# be a set
An XFD can determine functional relationship between af functional dependencies ovét. (S, F) is in XML nor-
tuple of text values of a given tuple of paths and a pathal form (XNF) iff for every XFD f/I € (S,F)™, also
denoting either a text value (e.¢:(x)) or a subtree (a node f € (S, F)*, i.e.
being the root of the subtree) (e.f.(x)).
There are also different notations to express functional (S:F) isin XNFiff f/l € (S,F)" = f e (S, F)*.
notations. For example, according to the notation usedih [1

the XFD f5(z1,2z2) can be expressed as: U

Intuitively, let f(x1, ..., z)/l be XFD andl be an instance
of S. I satisfies f(x1,...,zx)/l, if for any valuationw of
the tuple of variablegzy, ..., ), there is at most one text
value of the typeype(f/l). Thus, to avoid redundancies, for
every valuation ofz1, ..., ¢, ) we should store the value ¢f/l
only once, i.e. there must be only one subtree of type(f)
denoted by the expressigf{z1, ..., zx). In other words, XFD
f must be implied by(S, F') [11].

Let us consider schems; in Fig. 5 and its instancé, in
Fig. 6. Then

db.part.Qpld, db.part.supplier.of fer.Qsld —
db.part.supplier,

and using the language proposed in [20], as

(db.part, {pId}),
(db.part, (supplier, {of fer/sId})),

where the first expression is ambsolute keysaying that
db.part is absolutely determined byld, and the second
expression is eelative keysaying that in the context @b.part
a treesupplier is determined by the pathf fer.sId.

Further on, by(S,F) we will denote a schema TPE
together with a set of XFDs defined ov8r The closure of is XFD over S,. This dependency corresponds to relational
(S, F), denoted by(S, F)*, is the schema TPFE and the set functional dependencylelivPlace — sId and says that
of all XFDs which can be derived frortS, F'). delivery place determines the supplied ).

f(x1)/sId = /db/part/supplier|delivPlace = x1]/sId
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However,S; is not in XNF, since its instancé, does not
satisfy

db

Y

suppliers parts offers
f(z1) = /db/part/supplier[delivPlace = x1], Sup‘p"er* pa‘m* -
—| N —/

N
sId part= pld name old sId pId price delivTime

because for the valuatiom = [z; — ”d1”] there are two
different element nodesipplier with valuedl of delivPlace. pld
It means thatl; is not free of redundancy.

In the case of schem8s (Fig. 7) the corresponding XFD
has the form:

delivPlace

Fig. 9. XNF schema of schemds, Sz, and Ss

I,:
f(z1)/sId = /db/supplier|part/delivPlace = x1]/sld. ;upp"ers/d: e
parts
This dependency and also the XFD
suppliers
f(x1) = /db/supplier[part/delivPlace = x1] /supplier supplier

are satisfied byl; in Fig. 8. We see that this time for the ng Jpart  part  part SSIS part
valuationw = [z, — "d17”], there is only one element node pld pld pld pId

. . 1 1
of type supplier from which we can reacllelivPlace with P P2 p3 P

value d1. This means that schem@ not only captures the delivPlace. delivPlace deliPlace defiPlace
XML functional dependency under consideration, but also is parts
free of redundancies which may be caused by capturing this t/ \rt rt
dependencies that happens in the case of schema /par /pa /pa\
The other dependency of intereskisl, pId — delivPlace. pplf name pplg name p;g name
Its specification with respect t8; and S3 is as follows: N
orrers
) . ~J
/db/part[pld = x1]/supplier[sld = xs]/delivPlace, oﬁ’erﬁer/ ﬁoﬁer
\ | \
and old: ol 02 03 04
1d: 1 1
/db/supplier[sId = x1]/part|pld = xs]/delivPlace. :Id: :1 :1 :i :2
Itis easy to show that if these XFDs are satisfied by valuation price:  x1 X2 x3 x4
respectivelyw andw’ in instances ofS, and.Ss3, then also delivTime: 1 t2 13 t4

/db/part[pld = x1]/supplier[sld = xs],

Fig. 10. Instance of schema in Fig. 9
and
/db/supplier[sld = z:1]/part[pld = x2] db — db[content]
_ . . li ;

are satisfied by these valuations and these instances. content - Suzlgf;zfo[?}i I; l;]em]’parts[parts]’

However, neitherSy nor Ss is in XNF. We have already suppliers —  supplier|supplier]+
shown that there is redundancy in instancessef Similarly, pp Pb pp

- : parts —  parts[part;|*

we see that also in instances 8f redundancies may occur. of fers — offers|of fer]x
Indeed, since one part may be delivered by many suppliers supplier  —  sId[e], part[parts]
then the description of one part may be multiplied under each aff - Id[e], Ic)ielivPlacge[e]
supplier delivering this part, so such datapest name type p(mf N pId[e]7name[e]
manufactureretc. will be stored many times. szelr N gId[e]jsId[e]

In Fig. 9 there is the final schem&,, for schemas under pIdv[e] pri,ce[e] delivTime[d
considerationsS, S, and Ss3; S, is in XNF. To make the ’ ’
example more illustrative, we added nodene to part data. Fig. 11. An XSD describing the XML schema in Fig. 9. The symbol

Also the instance in Fig. 10 was slightly extended as contpardenotes the empty string.
with instancesl, and Is.
XSD (XML Schema Definition) foiS, in notation proposed
in [17] is shown in Fig. 11. name. Recall that in the case of DTD each nonterminal sym-
Note that we cannot use DTD since there are two subtreéad (label) can have only one type (definition), i.e. can appe
labeled part, where each of them has different type: then the left-hand side of exactly one production rule [17].
part subtree undesupplier consists ofpld anddelivPlace, A set of XFDs forS, is defined in Fig. 12. XFDs derived
whereas thepart subtree undeparts consists ofpl/d and from them are listed in Fig. 13.
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fi(x) = /db/suppliers/supplier[sld = x]

fa(x1,me) = /db/suppliers/supplier[sId = x]/
part[pld = x2]/delivPlace

fa(x) = /db/suppliers/supplier|
part/delivPlace = x]/sId

fa(x) = /db/parts/part[pld = x]/name

fs(x1,xa) = Jdbjoffers/of fer[sId =z
pld = x5]/old

fo(x) = /Jdbjof fers/of ferlold = x]/price

fr(x) = /dbjoffers/of fer[old = x]/delivTime

Fig. 12. A set of XFD for the schemé

fi(x1,22) = /db/suppliers/supplier[sld = x]/
part[pld = x4)

fi(z) = /db/suppliers/supplier|
part/delivPlace = )

fi(x) = /db/parts/part[pld = x]

fi(x1,0) = Jdbjoffers/of fer[sId = x1 A pld = 3]

fé(x) = /dbjoffers/of fer[old = x|

Fig. 13. A set of XFD derived from those in Fig. 12

We see that the schenty satisfies the condition of XNF.

Thus, this schema is both redundant-free and dependeR&)

preserving.
VIlI. CONCLUSION

PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

for controlling query propagation in P2P environment and fo
reconciliation of inconsistent data.
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(31
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(6]
(7]
(8]

El

[11]

In this paper, we discussed how the concept of databdsd
normalization can be used in the case of XML data. Nor-
malization is commonly used to develop a relational schema

free of unnecessary redundancies and preserving all data
dependencies existing in application domain. In order fyap 14
this approach to design XML schemas, we introduced a

]

language for expressing XML functional dependencies. ¢h fa
this language is a class of XPath expressions, so its synﬂﬂ
and semantics are defined precisely. We define the notion of
satisfaction of XML functional dependence by an XML tree.

To define XNF we use the approach proposed in [11].

[16]

All considerations are illustrated by the running examplg.7
We discuss various issues connected with normalization and

compare them with issues faced in the case of relatio

databases. We show how to develop redundancy-free

i

dependency preserving XML schema. It is worth mentionirigo]
that the relational version of the schema cannot be stredtufZ°!
in redundancy-free and dependency preserving form. In this
case, preservation of all dependencies requires 3NF bat th#]

some redundancy is present. Further normalization to BC
eliminates redundancies but does not preserve dependencie

In the case of XML, thanks to its hierarchical nature, we can

achieve both properties. However, it is not clear if thisriget
in all cases (see e.g. [12]).

In [15], [22], [23], XML functional dependencies (XFD)

(23]

have been used in XML data integration settings, in pawicul
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