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Abstract—In this paper we discuss the problem of redun-
dancies and data dependencies in XML data while an XML
schema is to be normalized. Normalization is one of the main
tasks in relational database design, where 3NF or BCNF, is to
be reached. However, neither of them is ideal: 3NF preserves
dependencies but may not always eliminate redundancies, BCNF
on the contrary—always eliminates redundancies but may not
preserve constraints. We discuss the possibility of achieving
both redundancy-free and dependency preserving form of XML
schema. We show how the XML normal form can be obtained
for a class of XML schemas and a class of XML functional
dependencies.

I. I NTRODUCTION

A S XML becomes popular as the standard data model
for storing and interchanging data on the Web and more

companies adopt XML as the primary data model for storing
information, XML schema design has become an increasingly
important issue. Central objectives of good schema design
is to avoid data redundancies and to preserve dependencies
enforced by the application domain. Existence of redundancy
can lead not only to a higher data storage cost but also to
increased costs for data transfer and data manipulation. Itcan
also lead to update anomalies.

One strategy to avoid data redundancies is to design
redundancy-free schema. One can start from an intuitively cor-
rect XML schema and a given set of functional dependencies
reflecting some rules existing in application domain. Then the
schema is normalized, i.e. restructured, in such a way that the
newly obtained schema has no redundancy, preserves all data
(is a lossless decomposition) and preserves all dependencies.
In general, obtaining all of these three objectives is not always
possible, as was shown for relational schemas [1]. However,in
the case of XML schema, especially thanks to its hierarchical
structure, this goal can be more often achieved [2].

The normalization process for relational schemas was pro-
posed in the early 70s by Codd [3], [4]. Then a number
of different normal forms was proposed, where the most
important of them such as 2NF, 3NF [3], BCNF [4], and
4NF [5] are discussed today in every database textbook [1],
[6], [7]. These normal forms together with normalization
algorithms, aim to deal with the design of relational database
taking into account different types of data dependencies [8],
[7]. The result of the normalization should be a well-designed

database [9]. The process of normalization of an XML schema
is similar: we have to choose an appropriate XML schema for
a given DTD and a set of data dependencies.

Recently, research on normalization of XML data was
reported in papers by Arenas and Libkin [10], [11], Kolahi
and Libkin [2], [12], [13], Yu and Jagadish [14].

In this paper we discuss a method for normalizing a class of
XML schemas into an XML normal form that is redundancy-
free and preserves all XML functional dependencies. To this
order we apply the theory proposed in [12] and [11]. The
novelty of the paper is the following:

• We use a new language (preliminarily proposed in [15])
for expressing schemas in a form of tree-pattern formulas,
and for specifying XML functional dependencies.

• We show how the proposed formalism can be used for
normalizing XML schemas into normal form similar to
that of BCNF with eliminating redundancies but preserv-
ing all functional dependencies.

The structure of the paper is the following. In Section 2
we introduce an running example and motivate the research.
In Section 3 a relational form of the running example is
considered and some problems with its normalization are
discussed. Basic notations relevant to the discussed issuefrom
the XML perspective, are introduced in Section 4. We define
a notation for defining tree-pattern formulas and for speci-
fying data dependencies: XML functional dependencies and
keys. Next, in Section 5, we discussed different normalization
alternatives—we show advantages and drawbacks of some
schema choices. Finally, in Section 6, an XML normal form
(XNF) is defined (according to [11]) and we show how this
form can be reached for our running example. We discuss
the problem from theoretical and practical points of view.
Section 7 concludes the paper.

II. M OTIVATION —REDUNDANCIES IN XML D ATA

In XML data, like in relational ones, redundancies are
caused by bad design of schemas. There are two kinds of
design problems [11]: first of them is caused by non-key
functional dependencies and is typical for relational schema
design, while the other is more closely related to the hierar-
chical structure of XML documents.
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As we mentioned above, in the case of XML schemas some
redundancy problems may also occur because of bad design
of hierarchical structure of XML document.

part

offer+

pId

sId

supplier

price delivTime delivPlace

db

oId

S1:

Fig. 1. Sample XML schema tree

db → part∗
part → pId supplier∗
pId → ǫ
supplier → offer+
offer → oId sId price delivTime delivPlace

oId → ǫ
sId → ǫ
price → ǫ
delivTime → ǫ
delivPlace → ǫ

Fig. 2. A DTD describing the XML schema in Fig. 1. The symbolǫ denotes
the empty string.
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Fig. 3. Sample instance of schemaS1

Example 2.1:Let us consider the XML schema tree in
Fig. 1 that describes a fragment of a database for storing
data about parts and suppliers offering these parts. Its DTD
specification is given in Fig. 2, and an instance of this schema
is depicted in Fig. 3.

Eachpart element has identifierpId. For each part may be
zero or more suppliers offering this part. Offers are storedin
offer elements. Each offer has: offer identifieroId, supplier

identifier sId, price price, delivery time delivT ime, and
delivery placedelivP lace.

We assume that the following constraints must be satisfied
by any instance of this schema:

• all offer children of the samesupplier must have the
same values ofsId; this is similar to relational functional
dependencies, but now we refer to both the values (text
value of sId), and to structure (children of the same
supplier).

• delivP lace functionally depends on part (pId) and sup-
plier (sId), i.e. when a supplier has two different offers
for the same part (possibly with differentdelivT ime
and/or price) the delivP lace is the same - see offers
o1 ando2 in Fig. 3.

• delivP lace functionally determines supplier (sId). It
means that having a delivery place (delivP lace) we
know exactly which supplier is associated to this place;
although one supplier can own many delivery places.
For example, in Fig. 3d1 is delivery place uniquely
associated to the suppliers1.

It is easy to show that schema in Fig. 1 leads to redundancy:
sid (an also all other data describing suppliers such as e.g.:
name and address) anddelivP lace are stored multiple times
for a supplier.

Further on we will show that a special caution should be
paid to such kind of dependencies as these in which partici-
patesdelivP lace. In this case we have to do with “cyclic”
dependencies, i.e.delivP lace depends onpId and sId
(pId, sId → delivP lace) and sId depends ondelivP lace
(delivP lace → sId).

First, we will discuss difficulties caused by such “cyclic”
dependencies in relational databases, and next, we will show
how this problem can be solved in the case of XML data.

III. D EALING WITH REDUNDANCIES AND DEPENDENCIES

IN RELATIONAL DATABASES

A. Relational schemas and functional dependencies

In relational data model, a relational schema is understood
as a pair

R = (U, F ),

whereU is a finite set ofattributes, andF is a set offunctional
dependenciesover F . A functional dependence (FD) as an
expression of the form

X → Y,

whereX, Y ⊆ U are subsets ofU . If Y ⊆ X , thenX → Y is
a trivial FD. By F+ we denote all dependencies which can be
inferred fromF by means of Armstrong’s axioms [16], [7].

A relation of typeU is a finite set of tuples of typeU . Let
U = {A1, ..., An} anddom(A) be thedomainof attributeA ∈
U . Then a tuple[A1 : a1, ..., An : an], whereai ∈ dom(Ai),
is a tuple of typeU .

A relation R conforms to schemaR = (U, F ) (is an
instance of this schema) ifR is of typeU , and all dependencies
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from F+ are satisfied byR. An FD X → Y is satisfied by
R, denotedR |= X → Y , if for all tuples r1, r2 ∈ R holds

πX(r1) = πX(r2) ⇒ πY (r1) = πY (r2),

whereπX(r) is the restriction (projection) of tuple r on the
setX of attributes.

A key in R = (U, F ) is such a minimal setK of attributes
thatK → U is in F+. Then eachA ∈ K is a prime attribute.

B. Normalization of relational schemas

The main task in relational schema normalization is pro-
ducing such a set of schemas that posses the required form,
usually 3NF or BCNF. The normalization process consists in
decomposition of a given input schema. The other approach
consists in synthesizing 3NF from functional dependencies[8].

Ideally, a decomposition of a schema should be lossless,
i.e. should preserve data and dependencies. LetR = (U, F ),
U1, U2 ⊆ U , andU1 ∪ U2 = U , then schemasR1 = (U1, F1)
and R2 = (U2, F2) are a lossless decomposition ofR =
(U, F ), iff:

• The decomposition preserves data, i.e. for each instance
R of R the natural join of projections ofR on U1 and
U2 produces the relation equal toR, i.e.

R = πU1
(R) ⊲⊳ πU2

(R).

• The decomposition preserves dependencies, i.e.

F+ = (F1 ∪ F2)
+,

whereF1 = {X → Y | X → Y ∈ F ∧ X ∪ Y ⊆ U1},
and similarly forF2.

The decomposition((U1, F1), (U2, F2)) of (U, F ) preserves
data, if U1 ∩ U2 → U1 ∈ F+ (or, symmetrically,U1 ∩ U2 →
U2 ∈ F+) [9], [7]. Then we say that thedecomposition is
determinedby the functional dependenceU1∩U2 → U1 ∈ F+.

A schemaR = (U, F ) is in 3NF if for every FDX → A ∈
F+ holds:

• X is a superkey, i.e. a key is a part ofX , or
• A is prime.

The second condition says that only prime attributes may be
functionally dependent on a set of attributes which is not a
key. A schema is in BCNF if only the first condition of the
two above is allowed. It means, that if whenever a setX
determines functionally an attributeA, thenX is a superkey,
i.e. determines the whole setU .

The aim of a normalization process is to develop normal
forms by analyzing functional dependencies and successive
decomposition of the input relational schema into its pro-
jections. This way a well-designed schema can be obtained,
where unnecessary redundancies and update anomalies had
been eliminated. In practice, 3NF is accepted as the most
desirable form of relational schemas It does not eliminate
all redundancies but guaranties dependency preservation.On
contrast, BCNF eliminates all redundancies but does not
preserve all dependencies. In [13] it was shown that 3NF
has the least amount of redundancy among all dependency

preserving normal forms. The research adopts a recently
proposed information-theoretic framework for reasoning about
database designs [10].

C. Relational analysis of XML schema

Let us consider the relational representation of data structure
presented in Fig. 1. Then we have the following relational
schema:

R = (U, F ), where
U = {oId, sId, pId, price, delivT ime, delivP lace},
F = {oId → sId, pId, price, delivT ime, delivP lace,

sId, pId → delivP lace,
delivP lace → sId}.

In R there is only onekey. The key consists of one attribute
oId since all attributes inU functionally depends onoId.
Thus,R is in 2NF andoId is the only prime (key) attribute
in R. Additionally, we assume that a given supplier delivers
a given part exactly to one place (pId, sId → delivP lace).
Moreover, delivery placedelivP lace is connected with only
one supplier (delivP lace → sId).

R is not in 3NF because for the functional dependency
sId, pId → delivP lace:

• sId, pId is not a superkey, and
• delivP lace is not a prime attribute inU .

Similarly for delivP lace → sId.
The lack of 3NF is the source of redundancies and update

anomalies. Indeed, for example, the value ofdelivP lace will
be repeated as many times as many different tuples with the
same value of the pair (sId, pId) exist in the instance of
R. To eliminate this drawback, we can decomposeR into
two relational schemas,R1 andR2, which are in 3NF. The
decomposition must be based on the dependencysId, pId →
delivP lace which guarantees that the decomposition preserves
data. As a result, we obtain:

R1 = (U1, F1), where
U1 = {oId, sId, pId, price, delivT ime},
F1 = {oId → sId, pId, price, delivT ime}.

R2 = (U2, F2), where
U2 = {sId, pId, delivP lace},
F2 = {sId, pId → delivP lace,

delivP lace → sId}.

The discussed decomposition is both data and dependencies
preserving, since:

R(U) = πU1
(R) ⊲⊳ πU2

(R),

for every instanceR of schemaR, and

F = (F1 ∪ F2)
+.

However, we see thatR2 is not in BCNF, sincedelivP lace
is not a superkey inR2.

The lack of BCNF inR2 is the reason of redundancies. For
example, in tableR2 we have as many duplicates ofsId as
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R2

sId pId delivP lace
s1 p1 d1
s1 p2 d1
s1 p3 d2
s2 p1 d3

many tuples with the same value ofdelivP lace exist in this
table.

We can further decomposeR2 into BCNF schemasR21

and R22, taking delivP lace → sId as the base for the
decomposition. Then we obtain:

R21 = (U21, F21), where
U21 = {delivP lace, sid},
F21 = {delivP lace → sId}.

R22 = (U22, F22), where
U22 = {pId, delivP lace},
F22 = ∅.

After applying this decomposition toR2 we obtain tables
R21 andR22:

R21

sId delivP lace
s1 d1
s1 d2
s2 d3

R22

pId delivP lace
p1 d1
p2 d1
p3 d2
p1 d3

This decomposition is information preserving, i.e.

R2 = R21 ⊲⊳ R22,

but does not preserve functional dependencies, i.e.

F2 6= (F21 ∪ F22)
+ = F21.

We can observe some negative consequences of the loss of
functional dependencies in the result decomposition.

Assume that we insert the tuple(p1, d2) into R22. The
tuple will be inserted because it does not violate any con-
strain imposed onR22. However, taking into account table
R21 we see that suppliers1 (determined byd2 in force
of delivP lace → sId) offers part p1 in the place d1.
Thus, the considered insertion violates functional dependency
sId, pId → delivP lace defined inR2.

The considered example shows that in the case of relational
databases we are not able to completely eliminate redundan-
cies and also preserve all functional dependencies. It turns out
([13]) that the best form for relation schema is 3NF, although
some redundancies in tables having this form can still remain.

In next section we will show that the hierarchical structure
of XML documents can be used to overcome some of the
limitations of relational normal forms [11]. As it was shown
in [12], there are decompositions of XML schemas that are
both information and dependency preserving. In particular, we

can obtain a form of XML schema that is equivalent to BCNF,
i.e. eliminates all redundancies, and additionally preserves all
XML functional dependencies.

IV. XML SCHEMAS AND INSTANCES

Schemas for XML data are usually specified by DTD or
XSD [17]. In this section we will define XML schema by
means oftree-pattern formulas(TPF) [18], [15]. Furthermore,
we do not consider attributes in XML trees since they can
always be represented by elements. Schemas will be used
to specify structures ofXML trees. Some other properties of
XML trees are defined asschema constraints.

Definition 4.1: Let L be a set oflabels, andx be a vector
of variables. A schema TPF overL and x is an expression
conforming to the syntax:

S ::= /l[E]
E ::= l = x | l[E] | E ∧ ... ∧ E,

where l ∈ L, and x ∈ x. In order to indicate the set and
ordering of variables inS we will write S(x).

�

Example 4.1:For the schema tree from Fig. 1, the schema
TPF has the following form:

S1 = /db[part[pId = x1 ∧ supplier[offer[
oid = x2 ∧ sid = x3 ∧ price = x4∧
delivT ime = x5 ∧ delivT ime = x6]]]].

�

We see that a schema TPF has the following properties:
• reflects the tree structure of XML data,
• binds variables to paths in the schema tree,
• is a well-formed XPath predicate according to [19].
Definition 4.2: Let S be a schema TPF overx and let an

atom l = x occur in S. Then the pathp starting in the root
and ending inl is called the type of the variablex, denoted
typeS(x) = p.

�

The type ofx1 in S1 is: typeS1
(x1) = /db/part/pId.

An XML database consists of a set of XML data. We define
XML data as an unordered rooted node-labeled tree (XML
tree) over a setL of labels, and a setStr ∪ {⊥} of strings
and the distinguished null value⊥ (both strings and the null
value,⊥, are used as values of text nodes).

Definition 4.3: An XML tree I is a tuple
(r, Ne, N t, child, λ, ν), where:

• r is a distinguishedroot node, Ne is a finite set ofelement
nodes, andN t is a finite set oftext nodes;

• child ⊆ ({r}∪Ne)× (Ne∪N t) – a relation introducing
tree structure into the set{r} ∪Ne ∪N t, wherer is the
root, each element node has at least one child (which is
an element or text node), text nodes are leaves;

• λ : Ne → L – a function labeling element nodes with
names (labels);

• ν : N t → Str ∪ {⊥} – a function labeling text nodes
with text valuesfrom Str or with the null value⊥.

�
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It will be useful to perceive an XML treeI with schema
S over tuple of variablesx, as a pair (S, Ω) (called a
description), where S is the schema TPF, andΩ is a set
of valuations of variables inx. A valuation ω ∈ Ω is a
function assigning values fromStr ∪ {⊥} to variables inx,
i.e. ω : x → Str ∪ {⊥}.

Example 4.2:The instanceI1 in Figure 3 can be repre-
sented by the following description:
I1 := (S1(x1, x2, x3, x4, x5, x6), {(p1, o1, s1, x1, t1, d1),

(p1, o2, s1, x2, t2, d1), (p1, o3, s2, x3, t3, d2),
(p2, o4, s1, x4, t4, d1)}).

�

An XML tree I satisfies a description(S, Ω), denoted
I |= (S, Ω), if I satisfies(S, ω) for every ω ∈ Ω, where
this satisfaction is defined as follows:

Definition 4.4: Let S be a schema TPF overx, andω be
a valuation for variables inx. An XML tree I satisfiesS by
valuationω, denotedI |= (S, ω), if the rootr of I satisfiesS
by valuationω, denoted(I, r) |= (S, ω), where:

1) (I, r) |= (/l[E], ω), iff ∃n ∈ Ne child(r, n) ∧ (I, n) |=
(l[E], ω);

2) (I, n) |= (l[E1 ∧ ... ∧ Ek], ω), iff λ(n) = l and
∃n1, ..., nk ∈ Ne(child(n, ni) ∧ (I, ni) |= (Ei, ω)) for
1 ≤ i ≤ k;

3) (I, n) |= (l = x, ω), iff λ(n) = l and ∃n′ ∈
N t(child(n, n′) ∧ ν(n′) = ω(x)).

�

A description(S, Ω) represents a class ofS instances with
the same set of values (the sameΩ), since elements in instance
trees can be grouped and nested in different ways.

For example, the XML tree in Fig. 4 satisfies two descrip-
tions (S1, Ω1), and(S2, Ω2) where:

S1 = /A[B = x1 ∧ C = x2],
Ω1 = {(b, c1), (b, c2)};

S2 = /A[B = x1 ∧ C = x2 ∧ D = x3],
Ω2 = {(b, c1, d1), (b, c2, d1)}.

A

B C C D D

b c1 c2 d1 d2

Fig. 4. A simple XML tree

V. XML FUNCTIONAL DEPENDENCIES AND KEYS

Over a schema TPF we can define some constraints, which
specify functional dependencies between values and/or nodes
in instances of the schema. These constraints are called XML
functional dependencies (XFD).

Definition 5.1: An XML functional dependency (XFD)
over a setL of labelsand a setx of variables is an expression
with the syntax:

fd ::= /P [C]/.../P [C],
P ::= l | P/l,
C ::= TRUE | P = x | C ∧ ... ∧ C,

(1)

where l ∈ L, andx is a variable inx. If variable names are
significant, we will writefd(x).

�

An XFD is an XPath expression that for a given valuation
ω of its variables returns a sequence of objects (nodes or
text values). An XML treeI = (S, Ω) satisfies an XFD
f(x1, ..., xk) if for each valuationω ∈ Ω of its variables,
f(x1, ..., xk) returns a singleton.

Definition 5.2: Let I be an instance of schema TPFS(x)
andf be an XFD defined overS. The instanceI satisfiesf ,
denotedI |= f , if for every valuationω of variables inx, the
implication holds

I |= (S, ω) ⇒ count([[f(ω)]]) ≤ 1,

where[[f(ω)]] is the result off computed by the valuationω.
�

In the following example we discuss some XFDs overS1.
Example 5.1:OverS1 the following XFDs can be defined:

f1(x) = /db/part[supplier/offer/oId = x],
f2(x) = /db/part[supplier/offer/oId = x]/pId,
f3(x1, x2) = /db/part[pId = x1]/supplier/offer[

sId = x2]/delivP lace,
f4(x) = /db/part/supplier/offer[

delivP lace = x]/sId,
f5(x1, x2) = /db/part[pId = x1]/supplier[

offer/sId = x2].

According to XPath semantics [19] the expressionf1(x)(ω)
is evaluated against the instanceI1 as follows: (1) first, a set
of nodes of type/db/part is chosen; (2) next, for each chosen
node the predicate[supplier/offer/oId = x] is tested, this
predicate is true in a noden, if there exists a path of type
supplier/offer/oId in I1 leading fromn to a text node with
the valueω(x). We see thatcount([[f1(x)(ω)]]) equals 1 for
all four valuations satisfied byI1, i.e. for ωi = [x 7→ oi],
1 ≤ i ≤ 4.

Similarly, execution off2(x)(ω) returns a text value of the
path/db/part/pId, where from the set of nodes determined
by /db/part are taken only nodes satisfying the predicate
[supplier/offer/oId = ω(x)]. We see that also this XFD
is satisfied byI1.

However, none of the following XFDs is satisfied inI1:

g1(x) = /db/part[supplier/offer/sId = x],
g2(x) = /db/part[pId = x]/supplier/offer/sId
g3(x) = /db/part[pId = x]/supplier/offer
g4(x1, x2) = /db/part[pId = x1]/supplier/offer[

sId = x2],
g5(x) = /db/part/pId/supplier/offer[

delivP lace = x].
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Fig. 5. Restructured form of schema in Fig. 1
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Evaluating the above XFDs againstI1, we obtain:

count([[g1(x)([x 7→ s1])]]) = 2,
count([[g2(x)([x 7→ p1])]]) = 2,
count([[g3(x)([x 7→ p1])]]) = 3,
count([[g4(x1, x2)([x1 7→ p1, x2 7→ s1])]]) = 2,
count([[g5(x)([x 7→ d1])]]) = 3.

An XFD can determine functional relationship between a
tuple of text values of a given tuple of paths and a path
denoting either a text value (e.g.f2(x)) or a subtree (a node
being the root of the subtree) (e.g.f1(x)).

There are also different notations to express functional
notations. For example, according to the notation used in [11],
the XFD f5(x1, x2) can be expressed as:

db.part.@pId, db.part.supplier.offer.@sId →
db.part.supplier,

and using the language proposed in [20], as

(db.part, {pId}),
(db.part, (supplier, {offer/sId})),

where the first expression is anabsolute keysaying that
db.part is absolutely determined bypId, and the second
expression is arelative keysaying that in the context ofdb.part
a treesupplier is determined by the pathoffer.sId.

Further on, by(S, F ) we will denote a schema TPFS
together with a set of XFDs defined overS. The closure of
(S, F ), denoted by(S, F )+, is the schema TPFS and the set
of all XFDs which can be derived from(S, F ).
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Fig. 7. Restructured form of schema in Fig. 1do IMCSIT 08do IMCSIT 08
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VI. N ORMAL FORM FORXML

To eliminate redundancies in XML documents, some normal
forms for XML schemas have been proposed [21], [11], [2],
[12]. We will define XNF (XML Normal Form) using tree-
pattern formulas and functional dependencies defined in the
previous section and adapting the approach proposed in [21].

Definition 6.1: Let S be a schema TPF andF be a set
of functional dependencies overS. (S, F ) is in XML nor-
mal form (XNF) iff for every XFD f/l ∈ (S, F )+, also
f ∈ (S, F )+, i.e.

(S, F ) is in XNF iff f/l ∈ (S, F )+ ⇒ f ∈ (S, F )+.

�

Intuitively, let f(x1, ..., xk)/l be XFD andI be an instance
of S. I satisfiesf(x1, ..., xk)/l, if for any valuationω of
the tuple of variables(x1, ..., xk), there is at most one text
value of the typetype(f/l). Thus, to avoid redundancies, for
every valuation of(x1, ..., xk) we should store the value off/l
only once, i.e. there must be only one subtree of typetype(f)
denoted by the expressionf(x1, ..., xk). In other words, XFD
f must be implied by(S, F ) [11].

Let us consider schemaS2 in Fig. 5 and its instanceI2 in
Fig. 6. Then

f(x1)/sId = /db/part/supplier[delivP lace = x1]/sId

is XFD over S2. This dependency corresponds to relational
functional dependencydelivP lace → sId and says that
delivery place determines the supplier (sId).
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However,S2 is not in XNF, since its instanceI2 does not
satisfy

f(x1) = /db/part/supplier[delivP lace = x1],

because for the valuationω = [x1 7→ ”d1”] there are two
different element nodessupplier with valued1 of delivP lace.
It means thatI2 is not free of redundancy.

In the case of schemaS3 (Fig. 7) the corresponding XFD
has the form:

f(x1)/sId = /db/supplier[part/delivP lace = x1]/sId.

This dependency and also the XFD

f(x1) = /db/supplier[part/delivP lace = x1]

are satisfied byI3 in Fig. 8. We see that this time for the
valuationω = [x1 7→ ”d1”], there is only one element node
of type supplier from which we can reachdelivP lace with
value d1. This means that schemaS3 not only captures the
XML functional dependency under consideration, but also is
free of redundancies which may be caused by capturing this
dependencies that happens in the case of schemaS2.

The other dependency of interest issId, pId → delivP lace.
Its specification with respect toS2 andS3 is as follows:

/db/part[pId = x1]/supplier[sId = x2]/delivP lace,

and

/db/supplier[sId = x1]/part[pId = x2]/delivP lace.

It is easy to show that if these XFDs are satisfied by valuations,
respectively,ω andω′ in instances ofS2 andS3, then also

/db/part[pId = x1]/supplier[sId = x2],

and
/db/supplier[sId = x1]/part[pId = x2]

are satisfied by these valuations and these instances.
However, neitherS2 nor S3 is in XNF. We have already

shown that there is redundancy in instances ofS2. Similarly,
we see that also in instances ofS3 redundancies may occur.
Indeed, since one part may be delivered by many suppliers
then the description of one part may be multiplied under each
supplier delivering this part, so such data aspart name, type,
manufactureretc. will be stored many times.

In Fig. 9 there is the final schema,S4, for schemas under
considerations:S1, S2, and S3; S4 is in XNF. To make the
example more illustrative, we added nodename to part data.
Also the instance in Fig. 10 was slightly extended as compared
with instancesI2 andI3.

XSD (XML Schema Definition) forS4 in notation proposed
in [17] is shown in Fig. 11.

Note that we cannot use DTD since there are two subtrees
labeled part, where each of them has different type: the
part subtree undersupplier consists ofpId anddelivP lace,
whereas thepart subtree underparts consists ofpId and

supplier offer

sId

pId

part price delivTime

delivPlace

db

pId

S4:

suppliers parts offers

pId

part

name sIdoId

Fig. 9. XNF schema of schemasS1, S2, andS3
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Fig. 10. Instance of schema in Fig. 9

db → db[content]
content → suppliers[suppliers], parts[parts],

offers[offers]
suppliers → supplier[supplier]∗
parts → parts[part1]∗
offers → offers[offer]∗
supplier → sId[ǫ], part[part2]
part2 → pId[ǫ], delivPlace[ǫ]
part1 → pId[ǫ], name[ǫ]
offer → oId[ǫ], sId[ǫ],

pId[ǫ], price[ǫ], delivTime[ǫ]

Fig. 11. An XSD describing the XML schema in Fig. 9. The symbolǫ

denotes the empty string.

name. Recall that in the case of DTD each nonterminal sym-
bol (label) can have only one type (definition), i.e. can appear
on the left-hand side of exactly one production rule [17].

A set of XFDs forS4 is defined in Fig. 12. XFDs derived
from them are listed in Fig. 13.
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f1(x) = /db/suppliers/supplier[sId = x]
f2(x1, x2) = /db/suppliers/supplier[sId = x]/

part[pId = x2]/delivP lace
f3(x) = /db/suppliers/supplier[

part/delivP lace = x]/sId
f4(x) = /db/parts/part[pId = x]/name
f5(x1, x2) = /db/offers/offer[sId = x1∧

pId = x2]/oId
f6(x) = /db/offers/offer[oId = x]/price
f7(x) = /db/offers/offer[oId = x]/delivT ime

Fig. 12. A set of XFD for the schemaS4

f ′

2(x1, x2) = /db/suppliers/supplier[sId = x]/
part[pId = x2]

f ′

3(x) = /db/suppliers/supplier[
part/delivP lace = x]

f ′

4(x) = /db/parts/part[pId = x]
f ′

5(x1, x2) = /db/offers/offer[sId = x1 ∧ pId = x2]
f ′

6(x) = /db/offers/offer[oId = x]

Fig. 13. A set of XFD derived from those in Fig. 12

We see that the schemaS4 satisfies the condition of XNF.
Thus, this schema is both redundant-free and dependency
preserving.

VII. C ONCLUSION

In this paper, we discussed how the concept of database
normalization can be used in the case of XML data. Nor-
malization is commonly used to develop a relational schema
free of unnecessary redundancies and preserving all data
dependencies existing in application domain. In order to apply
this approach to design XML schemas, we introduced a
language for expressing XML functional dependencies. In fact,
this language is a class of XPath expressions, so its syntax
and semantics are defined precisely. We define the notion of
satisfaction of XML functional dependence by an XML tree.
To define XNF we use the approach proposed in [11].

All considerations are illustrated by the running example.
We discuss various issues connected with normalization and
compare them with issues faced in the case of relational
databases. We show how to develop redundancy-free and
dependency preserving XML schema. It is worth mentioning
that the relational version of the schema cannot be structured
in redundancy-free and dependency preserving form. In this
case, preservation of all dependencies requires 3NF but then
some redundancy is present. Further normalization to BCNF
eliminates redundancies but does not preserve dependencies.
In the case of XML, thanks to its hierarchical nature, we can
achieve both properties. However, it is not clear if this is true
in all cases (see e.g. [12]).

In [15], [22], [23], XML functional dependencies (XFD)
have been used in XML data integration settings, in particular

for controlling query propagation in P2P environment and for
reconciliation of inconsistent data.
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